China Safety Science Journal ›› 2023, Vol. 33 ›› Issue (12): 53-59.doi: 10.16265/j.cnki.issn1003-3033.2023.12.1736
• Safety engineering technology • Previous Articles Next Articles
LU Yi1,2(), ZHOU Qinyun1, SHAO Shuzhen1, WANG Wei2, DAI Yuqing3, WEI Xue'e4
Received:
2023-06-10
Revised:
2023-09-15
Online:
2023-12-28
Published:
2024-06-28
LU Yi, ZHOU Qinyun, SHAO Shuzhen, WANG Wei, DAI Yuqing, WEI Xue'e. Influence and prediction of climatic factors on forest fires in China[J]. China Safety Science Journal, 2023, 33(12): 53-59.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cssjj.com.cn/EN/10.16265/j.cnki.issn1003-3033.2023.12.1736
Tab.1
Classification and climatic characteristics of forest fire hazard areas in China
类别 | 省份 | 聚类距离 | 气候特征 |
---|---|---|---|
Ⅰ | 重庆、四川、贵州 | 2~5 | 季风湿润气候,空气湿润,降水丰沛,太阳辐射弱,日照时间短,冬无严寒,夏无酷暑 |
Ⅱ | 浙江、福建、江西、湖南、广西 | 4~5 | 季风明显,全年气温适中,日照较多,雨量充沛,空气湿润 |
Ⅲ | 上海、江苏、安徽、湖北 | 3~5 | 亚热带湿润性季风气候,四季分明,日照充分,雨量充沛,冬冷夏热,春温多变 |
Ⅳ | 广东 | 7 | 季风气候,热量资源丰富,气候温暖,冬无严寒 |
Ⅴ | 北京、天津、河北、山西、山东、 河南、陕西 | 2~4 | 温带、亚热带季风气候,夏季高温多雨,冬季寒冷干燥,干旱少雨 |
Ⅵ | 辽宁、吉林、黑龙江 | 2~3 | 季风气候,四季分明,寒冷期长;雨量集中,风大,日照丰富 |
Ⅶ | 西藏、甘肃、青海、宁夏、新疆 | 3~4 | 晴天多,日照时间长,少雨,干燥,冬寒夏热,夏季短促,气温高,秋季降温快 |
Ⅷ | 内蒙古 | 6 | 风大少雨,昼夜温差大,日照时间充足,月降水变化大 |
Ⅸ | 海南 | 9 | 四季不分明,夏无酷热,冬无严寒,气温年较差小,年平均气温高 |
Ⅹ | 云南 | 25 | 年温差小,日温差大,干湿季节分明 |
Tab.2
Grey correlation coefficient between climatic factors and the number of forest fires per unit area
类别 | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ | Ⅵ | Ⅶ | Ⅷ | Ⅸ | Ⅹ | 均值 |
---|---|---|---|---|---|---|---|---|---|---|---|
年均气压系数 | 0.645 | 0.675 | 0.536 | 0.731 | 0.711 | 0.716 | 0.996 | 0.571 | 0.673 | 0.496 | 0.675 |
年均气温系数 | 0.742 | 0.694 | 0.638 | 0.669 | 0.751 | 0.617 | 0.470 | 0.718 | 0.609 | 0.573 | 0.648 |
年均降水量系数 | -0.713 | -0.665 | -0.700 | -0.728 | -0.732 | -0.613 | -0.993 | -0.752 | -0.525 | -0.600 | -0.702 |
年均日照时间系数 | 0.692 | 0.689 | 0.606 | 0.746 | 0.672 | 0.595 | 0.558 | 0.642 | 0.654 | 0.611 | 0.646 |
Tab.3
Regression model and test results of four types of climatic factors in China
类别 | 线性回归模型 | 相关系数 | F值 | 显著水平 | |
---|---|---|---|---|---|
Ⅳ | y=b1+b2X1+b3X2+b4X3+b5X4 | (6) | 0.671 | 6.80 | 0.027 |
Ⅷ | 0.694 | 8.60 | 0.025 | ||
Ⅸ | 0.688 | 14.99 | 0.018 | ||
Ⅹ | 0.879 | 50.10 | 0.001 | ||
Ⅰ | y=b1+b2X1+b3X2+b4X3+b5X4+b6 +b7 +b8 + b9 +b10X1X2+b11X1X3+b12X1X4+b13X2X4+b14X2X4+b15X3X4 | (7) | 0.803 | 6.39 | 0.001 |
Ⅱ | 0.601 | 4.53 | 0.014 | ||
Ⅲ | 0.868 | 35.05 | 0.001 | ||
Ⅴ | 0.662 | 3.92 | 0.001 | ||
Ⅵ | 0.846 | 46.40 | 0.001 | ||
Ⅶ | 0.634 | 5.23 | 0.020 |
Tab.5
b value of fire risk areas in multiple provinces
回归 系数 | Ⅰ | Ⅱ | Ⅲ | Ⅴ | Ⅵ | Ⅶ |
---|---|---|---|---|---|---|
b1 | 57.38 | -294 5 | 358 9.80 | -498.8 | 31.94 | -8.05 |
b2 | -0.128 | 5.811 | -6.678 | 0.972 | -0.050 | 0.013 |
b3 | 2.762 | 11.55 | -24.29 | 10.357 | -0.693 | -0.999 |
b4 | -0.018 | -0.018 | -0.087 | -0.002 | -0.001 | 0.009 |
b5 | -0.018 | -0.096 | 0.043 | -0.027 | -0.003 | 0.003 |
b6 | 0.000 | -0.003 | 0.003 | 0.000 | 0.000 | 0.000 |
b7 | 0.014 | 0.075 | 0.027 | -0.004 | 0.004 | 0.012 |
b8 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
b9 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
b10 | -0.002 | -0.015 | 0.024 | -0.013 | 0.001 | 0.001 |
b11 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
b12 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
b13 | -0.001 | 0.000 | 0.000 | -0.001 | 0.000 | 0.000 |
b14 | 0.000 | 0.000 | -0.001 | 0.001 | 0.000 | 0.000 |
b15 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Tab.6
Prediction of forest fire hazards in 2021
省份 | 年均气压/MPa | 年均气温/℃ | 年均降水量/m | 年均日照时间/h | 预测值 | 实际值 | 误差列 |
---|---|---|---|---|---|---|---|
北京 | 0.100 26 | 13.00 | 0.691 | 2 278.9 | 0.042 7 | 0.041 8 | 0.000 9 |
天津 | 0.101 46 | 13.00 | 0.609 | 2 558.4 | 0.029 0 | 0.000 0 | 0.029 0 |
河北 | 0.099 34 | 12.90 | 0.859 | 2 160.9 | 0.013 7 | 0.013 9 | -0.000 2 |
山西 | 0.092 82 | 11.00 | 0.722 | 2 458.0 | 0.021 7 | 0.021 8 | -0.000 1 |
山东 | 0.099 01 | 14.00 | 0.708 | 2 249.6 | 0.007 5 | 0.007 5 | 0.000 0 |
河南 | 0.095 91 | 14.00 | 0.803 | 1 980.9 | 0.017 8 | 0.017 4 | 0.000 4 |
陕西 | 0.093 73 | 13.00 | 0.936 | 1 882.0 | 0.019 7 | 0.019 2 | 0.000 5 |
内蒙古 | 0.092 75 | 3.50 | 0.328 | 2 099.6 | 0.001 2 | 0.001 1 | 0.000 1 |
辽宁 | 0.103 05 | 9.30 | 0.741 | 2 133.0 | 0.023 05 | 0.022 7 | 0.000 4 |
吉林 | 0.098 74 | 6.80 | 0.788 | 2 392.0 | 0.014 4 | 0.014 0 | 0.000 4 |
黑龙江 | 0.095 60 | 4.30 | 0.804 | 2 765.0 | 0.005 0 | 0.005 0 | 0.000 0 |
上海 | 0.102 07 | 17.90 | 1.520 | 1 740.0 | 0.050 5 | 0.000 0 | 0.050 5 |
江苏 | 0.102 56 | 15.90 | 1.500 | 1 799.4 | 0.012 7 | 0.012 8 | -0.000 1 |
安徽 | 0.102 35 | 18.40 | 1.290 | 1 931.5 | 0.012 2 | 0.012 6 | -0.000 4 |
湖北 | 0.097 71 | 17.50 | 1.714 | 1 500.5 | 0.039 5 | 0.040 7 | -0.001 2 |
浙江 | 0.100 86 | 17.60 | 1.403 | 1 384.2 | 0.058 4 | 0.057 9 | 0.000 5 |
福建 | 0.100 33 | 21.20 | 1.343 | 1 805.3 | 0.055 0 | 0.054 2 | 0.000 8 |
江西 | 0.100 88 | 18.20 | 1.310 | 1 493.1 | 0.050 9 | 0.049 0 | 0.001 9 |
湖南 | 0.100 26 | 18.00 | 1.342 | 1 342.5 | 0.048 8 | 0.048 5 | 0.000 3 |
广西 | 0.099 45 | 21.60 | 1.364 | 1 669.1 | 0.073 7 | 0.072 0 | 0.001 7 |
广东 | 0.100 84 | 22.90 | 1.784 | 1 364.0 | 0.105 8 | 0.101 4 | 0.004 3 |
海南 | 0.099 96 | 25.60 | 1.613 | 2 232.3 | 0.075 7 | 0.077 1 | -0.001 4 |
重庆 | 0.096 24 | 18.20 | 1.306 | 1 339.3 | 0.022 1 | 0.022 5 | -0.000 4 |
四川 | 0.089 05 | 15.40 | 1.133 | 1 395.9 | 0.010 0 | 0.009 8 | 0.000 2 |
贵州 | 0.094 26 | 16.70 | 1.181 | 1 003.5 | 0.014 9 | 0.014 3 | 0.000 6 |
云南 | 0.083 66 | 17.60 | 1.157 | 2 097.7 | 0.021 1 | 0.021 8 | -0.000 7 |
西藏 | 0.065 59 | 5.40 | 0.390 | 2 512.2 | 0.001 3 | 0.001 3 | 0.000 0 |
甘肃 | 0.077 27 | 8.00 | 0.358 | 2 353.0 | 0.011 2 | 0.011 8 | -0.000 6 |
青海 | 0.068 86 | 3.40 | 0.356 | 2 170.9 | 0.012 2 | 0.011 9 | 0.000 3 |
宁夏 | 0.083 19 | 8.50 | 0.296 | 2 502.0 | 0.059 3 | 0.061 0 | -0.001 7 |
[1] |
全国绿化委员会办公室. 2022年中国国土绿化状况公报[J]. 国土绿化, 2023(3): 6-11.
|
[2] |
国家统计局. 2011—2020年中国统计年鉴[M]. 北京: 中国统计出版社, 2012—2021.
|
[3] |
龙腾腾, 殷继艳, 欧朝蓉, 等. 云南省森林火灾风险综合评价及空间格局研究[J]. 中国安全科学学报, 2021, 31(9):167-173.
doi: 10.16265/j.cnki.issn1003-3033.2021.09.023 |
doi: 10.16265/j.cnki.issn1003-3033.2021.09.023 |
|
[4] |
魏书精, 罗斯生, 罗碧珍, 等. 气候变化背景下森林火灾发生规律研究[J]. 林业与环境科学, 2020, 36(2): 133-143.
|
|
|
[5] |
王姊辉, 董恒, 赵洋甬, 等. 应用机器学习模型对中国云贵川区域林火风险预测[J]. 东北林业大学学报, 2023, 51(5): 113-119.
|
|
|
[6] |
李思宇, 梁达, 韦燕芳, 等. 基于贝叶斯网络的干旱-森林火灾灾害链定量建模研究[J]. 自然灾害学报, 2023, 32(1): 38-46.
|
|
|
[7] |
李德, 牛树奎, 龙先华, 等. 四川省森林火灾与气象因子的关系[J]. 西北农林科技大学学报:自然科学版, 2013, 41(6): 67-74.
|
|
|
[8] |
李丽琴. 云南省森林火灾发生与气象因子之间的关系研究[D]. 北京: 北京林业大学, 2010.
|
|
|
[9] |
肖云丹, 纪平. 基于贝叶斯-零膨胀负二项模型的森林火灾发生预测研究[J]. 中南林业科技大学学报, 2021, 41(5):49-56.
|
|
|
[10] |
《中国气象年鉴》编辑部. 2011—2020年中国气象年鉴[M]. 北京: 气象出版社, 2012—2021.
|
[11] |
中国气象局. 2021年中国气候公报[R/OL]. (2022-03-08). https://www.cma.gov.cn/zfxxgk/gknr/qxbg/202203/t202203084568477.html.
|
[12] |
肖峻峰, 陈健, 戴程呈, 等. 高含硫天然气泄漏爆炸与毒性影响因素分析[J]. 中国安全科学学报, 2020, 30(6): 43-49.
doi: 10.16265/j.cnki.issn1003-3033.2020.06.007 |
doi: 10.16265/j.cnki.issn1003-3033.2020.06.007 |
|
[13] |
解明垒, 马尚权. 基于多元线性回归理论的煤矿瓦斯涌出量预测[J]. 陕西煤炭, 2021, 40(1):26-29, 52.
|
|
[1] | LIU Dan, LUO Yansheng, LI Shixuan, XU Gangyan, LI Moxiao. Causes and correlation network analysis of civil aviation accidents for whole flight phases [J]. China Safety Science Journal, 2024, 34(3): 84-92. |
[2] | WANG Yongjun, ZHENG Qian, ZHANG Hemeng, DONG Wei, ZHANG Xiaoming, SASAKI Kyuro. Correlation analysis between combustion of underground residual coal and surface carbon flux in goaf [J]. China Safety Science Journal, 2024, 34(2): 161-167. |
[3] | ZHANG Yutao, GUO Qiang, ZHANG Yuanbo, LI Yaqing, SUN Yali. Correlation analysis and prediction of coal spontaneous combustion risk based on correlation coefficient method [J]. China Safety Science Journal, 2024, 34(1): 125-132. |
[4] | LI Xinhong, FU Yaqian, LIU Yazhou, HAN Ziyue, ZHANG Renren. Copula-BN based risk assessment methodology of marine ship collisions [J]. China Safety Science Journal, 2023, 33(9): 204-213. |
[5] | WU Ankun, WU Shijun, DING Min, ZHANG Chi, ZHANG Shuxia. Prediction of lightning potential based on LSTM recurrent neural network [J]. China Safety Science Journal, 2023, 33(8): 117-124. |
[6] | WANG Qifei, ZHAO Yihan, ZHANG Hui, WANG Jian, WANG Yafei. Evaluation of urban resilience based on PSR model and information sensitivity: a case study of Beijing [J]. China Safety Science Journal, 2023, 33(8): 198-204. |
[7] | NIU Lixia, YANG Manyi. Construction of a risk evaluation index system for vaccine supply chain [J]. China Safety Science Journal, 2023, 33(7): 32-38. |
[8] | LI Lei, LI Jiang'e, REN Yufei, TANG Xiaoxiao. Research on causes of urban rail delay risk based on HFACS model [J]. China Safety Science Journal, 2023, 33(5): 152-157. |
[9] | XU Hu, CHEN Yuhang, HE Jiabin, YAHIA Halabi, LONG Danbing, ZHAO Shixing. Analysis of fall accidents characteristics in building construction based on frequency statistics and χ2-PCC [J]. China Safety Science Journal, 2023, 33(4): 91-99. |
[10] | CUI Xin, LU Qingchang, ZHANG Lei, XU Biao, QIN Han, LIU Peng. Research on vulnerability of rail transit network under coordinated attack of associated stations [J]. China Safety Science Journal, 2023, 33(3): 167-173. |
[11] | CHEN Shuang, BAI Genming, XIAO Chang, QU Honglue, WANG Lin, LIU Zheyan. Analysis of influence of fault structure on initial ground stress field of high ground stress tunnel [J]. China Safety Science Journal, 2023, 33(2): 146-151. |
[12] | PAN Weijun, QIN Liru, LUO Chen, HUANG Yuanjing. Adaptive feature extraction of general aviation forest fire rescue data [J]. China Safety Science Journal, 2023, 33(11): 67-74. |
[13] | LI Hua, GUO Haojie, XIE Hui, LIN Peng. Information transmission analysis of forest fire emergency command based on information entropy [J]. China Safety Science Journal, 2023, 33(1): 80-87. |
[14] | ZHANG Boxu. Grey correlation analysis of railway accidents [J]. China Safety Science Journal, 2022, 32(S2): 60-63. |
[15] | ZHU Xin, LI Jianwei, GUO Wei, BI Sheng, WU Yuefei. Forest fire risk prediction model based on machine learning [J]. China Safety Science Journal, 2022, 32(9): 152-157. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||