[1] |
ICAO. Global air traffic management operational concept[R], 2015.
|
[2] |
DAL S V, FOMENI F D, LULLI G, et al. Incorporating stakeholders' priorities and preferences in 4D trajectory optimization[J]. Transportation Research Part B: Methodological, 2018, 117: 594-609.
|
[3] |
李善梅, 徐维. 面向飞行时间可靠性的航班改航路径规划[J]. 中国安全科学学报, 2022, 32(8):98-103.
doi: 10.16265/j.cnki.issn1003-3033.2022.08.0639
|
|
LI Shanmei, XU Wei. Flight rerouting planning considering travel time reliability[J]. China Safety Science Journal, 2022, 32(8): 98-103.
doi: 10.16265/j.cnki.issn1003-3033.2022.08.0639
|
[4] |
王岩韬, 刘锟. 危险天气下4D改航回归航迹规划方法[J]. 中国安全科学学报, 2023, 33(2):110-117.
doi: 10.16265/j.cnki.issn1003-3033.2023.02.1355
|
|
WANG Yantao, LIU Kun. Four-dimension diversion and regression path planning method in hazardous weather conditions[J]. China Safety Science Journal, 2023, 33(2):110-117.
doi: 10.16265/j.cnki.issn1003-3033.2023.02.1355
|
[5] |
陈雨童, 胡明华, 杨磊, 等. 受限航路空域自主航迹规划与冲突管理技术[J]. 航空学报, 2020, 41(9):253-270.
|
|
CHEN Yutong, HU Minghua, YANG Lei, et al. Autonomous trajectory planning and conflict management technology in restricted airspace[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9):253-270.
|
[6] |
杨磊, 李文博, 刘芳子, 等. 柔性空域结构下连续下降航迹多目标优化[J]. 航空学报, 2021, 42(2): 206-222.
|
|
YANG Lei, LI Wenbo, LIU Fangzi, et al. Multi-objective optimization of continuous descending trajectories in flexible airspace[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 206-222.
|
[7] |
张思远, 李仙颖, 沈笑云. 基于ADS-B IN 的冲突预测与多机无冲突航迹规划[J]. 系统仿真学报, 2019, 31(8): 1627-1635.
doi: 10.16182/j.issn1004731x.joss.17-0266
|
|
ZHANG Siyuan, LI Xianying, SHEN Xiaoyun. ADS-B in based conflict prediction and conflict-free trajectory planning for multi-aircraft[J]. Journal of System Simulation, 2019, 31(8): 1627-1635.
doi: 10.16182/j.issn1004731x.joss.17-0266
|
[8] |
魏志强, 商谢睿. 考虑环境影响的自由航路空域无冲突飞行规划[J]. 安全与环境学报, 2023, 23(9):3297-3306.
|
|
WEI Zhiqiang, SHANG Xierui. Conflict-free flight planning in free route airspace considering the influence of the environment[J]. Journal of Safety and Environment, 2023, 23(9):3297-3306.
|
[9] |
SEENIVASAN D B, OLIVARES A, STAFFETTI E. Multi-aircraft optimal 4D online trajectory planning in the presence of a multi-cell storm in development[J]. Transportation Research Part C: Emerging Technologies, 2020, 110: 123-142.
|
[10] |
AHMED K, BOUSSIN K, COELHO M F. A modified dynamic programming approach for 4D minimum fuel and emissions trajectory optimization[J]. Aerospace, 2021, 8(5): DOI: 10.3390/aerospace8050135.
|
[11] |
常哲宁, 胡明华, 张颖, 等. 风影响下航空器多目标最优控制航迹优化方法[J]. 北京航空航天大学学报, 2024, 50(11):3521-3531.
|
|
CHANG Zhening, HU Minghua, ZHANG Ying, et al. A multi-objective optimal control trajectory optimization method for aircraft under wind[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(11):3521-3531.
|
[12] |
许家欣, 张军峰, 杜卓铭, 等. 航空器连续爬升运行的垂直剖面生成与优化[J]. 武汉理工大学学报:交通科学与工程版, 2023, 47(3):436-439.
|
|
XU Jiaxin, ZHANG Junfeng, DU Zhuoming, et al. Generation and optimization of vertical profiles for continuous climb operation[J]. Journal of Wuhan University of Technology: Transportation Science &Engineering, 2023, 47(3):436-439.
|
[13] |
Eurocontrol Experimental Centre, User manual for the base of aircraft data (BADA)[S]. 2009.
|
[14] |
PATTERSON M A, RAO A V. GPOPS-II: a matlab software for solving multiple-phase optimal control problems using hp-adaptive Gaussian quadrature collocation methods and sparse nonlinear programming[J]. ACM Transactions on Mathematical Software, 2014, 41(1): 1-37.
|
[15] |
GILL P E, WONG E, MURRAY W, et al. User's guide for SNOPT version 7.5: software for large-scale nonlinear programming[R]. University of California, 2015.
|
[16] |
CCAR-93-R5,民用航空空中交通管理规则[S]. 2017.
|
|
CCAR-93-R5,Civil aviation air traffic management rules[S]. 2017.
|