[1] |
白明洲, 许兆义, 王连俊, 等. 复杂岩溶地区隧道施工突水地质灾害研究[J]. 中国安全科学学报, 2006, 16(1):114-118.
|
|
BAI Mingzhou, XU Zhaoyi, WANG Lianjun, et al. Study on water outburst geological disaster of tunnel construction at complicated karst zone[J]. China Safety Science Journal, 2006, 16(1): 114-118.
|
[2] |
XUE Yiguo, KONG Fanmeng, LI Shucai, et al. Water and mud inrush hazard in underground engineering: genesis, evolution and prevention[J]. Tunnelling and Underground Space Technology, 2021, 114: DOI: 10.1016/J.TUST.2021.103987.
|
[3] |
王璐. 基于遗传算法和支持向量机的西南岩溶越岭隧道涌水量预测[D]. 成都: 成都理工大学, 2019.
|
|
WANG Lu. Prediction of water inflow in southwest karst crossing-mountain tunnel based on genetic algorithm and support vector machine[D]. Chengdu: Chengdu University of Technology, 2019.
|
[4] |
马天行, 林允, 周晓斌, 等. 煤层底板突水危险性预测的熵权-正态云模型[J]. 中国安全科学学报, 2022, 32(增1):171-177.
|
|
MA Tianxing, LIN Yun, ZHOU Xiaobin, et al. Entropy weight-normal cloud model for water inrush risk prediction of coal seam floor[J]. China Safety Science Journal, 2022, 32(S1): 171-177.
doi: 10.16265/j.cnki.issn1003-3033.2022.S1.0445
|
[5] |
柏成浩. 基于机器学习的岩溶隧道突水突泥灾害风险智能预测方法研究[D]. 济南: 山东大学, 2021.
|
|
BO Chenghao. Research on intelligent prediction method of hazard risk of water and mud inrush in karst tunnel based on machine learning[D]. Jinan: Shandong University, 2021.
|
[6] |
周志华. 机器学习[M]. 北京: 清华大学出版社, 2016:171-190.
|
[7] |
GUO Wangda, ZHANG Jinxi, MURTAZA M, et al. An ensemble learning with sequential model-based optimization approach for pavement roughness estimation using smartphone sensor data[J]. Construction and Building Materials, 2023, 406: DOI: 10.1016/J.CONBUILDMAT.2023.133293.
|
[8] |
WOLPERT D H. Stacked generalization[J]. Neural Networks, 1992, 5(2): 241-259.
|
[9] |
ZHANG Nian, NIU Mengmeng, WAN Fei, et al. Hazard prediction of water inrush in water-rich tunnels based on random forest algorithm[J]. Applied Sciences, 2024, 14(2):DOI: 10.3390/APP14020867.
|
[10] |
YAN Tao, SHEN Shuilong, ZHOU Annan, et al. Prediction of geological characteristics from shield operational parameters by integrating grid search and K-fold cross validation into stacking classification algorithm[J]. Journal of Rock Mechanics and Geotechnical Engineering: English Edition, 2022, 14(4): 1292-1303.
|
[11] |
XU Ying. Research on cooling load estimation through optimal hybrid models based on naive bayes[J]. Journal of Engineering and Applied Science, 2024, 71(1):DOI: 10.1186/S44147-024-00396-9.
|
[12] |
LI Yanlong, YIN Qiaogang, ZHANG Ye, et al. Deformation prediction model of concrete face rockfill dams based on an improved random forest model[J]. Water Science and Engineering, 2023, 16(4): 390-398.
|
[13] |
NIE Xiaobo, LI Haibin. Structural reliability analysis based on support vector machine and dual neural network direct integration method[J]. Journal of Donghua University: English Edition, 2021, 38(1): 51-56.
|
[14] |
SOHEILA K, CHENG Bin, JOSE T. Structural performance assessment of GFRP elastic gridshells by machine learning interpretability methods[J]. Frontiers of Structural and Civil Engineering, 2022, 16(10): 1249-1266.
doi: 10.1007/s11709-022-0858-5
|