China Safety Science Journal ›› 2025, Vol. 35 ›› Issue (7): 192-200.doi: 10.16265/j.cnki.issn1003-3033.2025.07.1025
• Public safety • Previous Articles Next Articles
QIAO Jianfeng1(), WANG Yanan1, LYU Shuran1, WANG Ting1, XIA Xuefeng2
Received:
2025-03-04
Revised:
2025-05-09
Online:
2025-08-21
Published:
2026-01-28
CLC Number:
QIAO Jianfeng, WANG Yanan, LYU Shuran, WANG Ting, XIA Xuefeng. Cluster analysis of autonomous driving traffic accidents based on K-means and LCA[J]. China Safety Science Journal, 2025, 35(7): 192-200.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cssjj.com.cn/EN/10.16265/j.cnki.issn1003-3033.2025.07.1025
Table 1
Distribution of AV crashes
类型变量 | 枚举实例 | 总数 | 占比/% |
---|---|---|---|
1 AV驾驶状态 | 行驶 | 251 | 57.4 |
停止 | 186 | 42.6 | |
2 AV驾驶模式 | 自动驾驶模式 | 252 | 57.7 |
传统模式 | 185 | 42.3 | |
3 AV碰撞前的 状态 | 停车 | 176 | 40.3 |
直行 | 123 | 28.1 | |
转弯 | 48 | 11 | |
倒车 | 21 | 4.8 | |
减速/减速停车 | 39 | 8.9 | |
变道 | 8 | 1.8 | |
停车/泊车 | 12 | 2.7 | |
其他行驶状态 | 10 | 2.3 | |
4 AV碰撞类型 | 追尾 | 189 | 43.2 |
侧刮 | 110 | 25.2 | |
侧撞 | 38 | 8.7 | |
正面碰撞 | 37 | 8.5 | |
撞物 | 37 | 8.5 | |
其他类型 | 26 | 5.9 | |
5 AV损坏程度 | 未损坏 | 29 | 6.6 |
轻度 | 332 | 76 | |
中度 | 65 | 14.9 | |
重度 | 11 | 2.5 | |
6 CV碰撞前的 状态 | 停车 | 13 | 3 |
直行 | 188 | 43 | |
转弯 | 39 | 8.9 | |
倒车 | 27 | 6.2 | |
减速/减速停车 | 10 | 2.3 | |
变道 | 22 | 5 | |
停车/泊车 | 32 | 7.3 | |
超越其他车辆 | 17 | 3.9 | |
其他行驶状态 | 89 | 20.4 | |
7 VRU | 否 | 392 | 89.7 |
是 | 45 | 10.3 | |
8人员受伤 程度 | 未受伤 | 396 | 90.6 |
受伤 | 41 | 9.4 | |
9天气 | 晴朗 | 364 | 83.3 |
多云 | 45 | 10.3 | |
雨天 | 26 | 5.9 | |
雾天 | 2 | 0.5 | |
10照明 | 日光 | 293 | 67 |
黎明 | 12 | 2.7 | |
路灯 | 127 | 29.1 | |
无路灯 | 5 | 1.1 | |
11路面情况 | 干燥 | 405 | 92.7 |
潮湿 | 32 | 7.3 | |
12道路情况 | 坑洞 | 2 | 0.5 |
障碍物 | 3 | 0.7 | |
狭窄 | 4 | 0.9 | |
其他道路情况 | 10 | 2.3 | |
无异常 | 418 | 95.7 |
Table 2
Clustering centers for K-means
聚类1(203个样本) | 聚类2(156个样本) | 聚类3(79个样本) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
特征词 | TFIDF | 特征词 | TFIDF | 特征词 | TFIDF | |||||
车道(lane) | 0.089 2 | 停止(stop) | 0.103 4 | 停车(park) | 0.194 9 | |||||
右(right) | 0.064 6 | 后部(rear) | 0.099 4 | 侧面(side) | 0.110 0 | |||||
转弯(turn) | 0.060 5 | 保险杠(bumper) | 0.092 6 | 手动(manual) | 0.073 1 | |||||
大卡车(truck) | 0.055 5 | 灯(light) | 0.091 4 | 前部(front) | 0.065 9 | |||||
停止(stop) | 0.051 0 | 交叉路口(intersection) | 0.074 6 | 镜子(mirror) | 0.063 4 | |||||
前(front) | 0.048 0 | 自动(autonomous) | 0.067 2 | 倒车(reverse) | 0.062 2 | |||||
手动(manual) | 0.047 0 | 在…之后(behind) | 0.064 2 | 平行(parallel) | 0.049 1 | |||||
侧面(side) | 0.044 1 | 红(red) | 0.061 7 | 场地(lot) | 0.047 5 | |||||
后部(rear) | 0.039 8 | 轻微(minor) | 0.054 1 | 轻微(minor) | 0.046 9 | |||||
在…上(onto) | 0.037 2 | 交通(traffic) | 0.052 4 | 卷入(involve) | 0.044 7 | |||||
自动(autonomous) | 0.037 0 | 靠近(approach) | 0.043 5 | 后部(rear) | 0.043 1 | |||||
卷入(involve) | 0.035 0 | 英里每小时(mph) | 0.039 0 | 右(right) | 0.042 9 | |||||
街(boulevard) | 0.033 0 | 转弯(turn) | 0.038 1 | 自动(autonomous) | 0.039 4 | |||||
自行车(cyclist) | 0.030 8 | 卷入(involve) | 0.037 8 | 空间(space) | 0.039 0 | |||||
在…之后(behind) | 0.030 5 | 在…之前(front) | 0.036 1 | 马路牙子(curb) | 0.037 9 |
Table 3
Proportion of clustered responses for structural variables %
类型变量 | 实例 | 聚类1 | 聚类2 | 聚类3 | 聚类4 | ||||
---|---|---|---|---|---|---|---|---|---|
1 AV驾驶状态 | 行驶 | 0 | 95.4 | 99 | 66.8 | ||||
停止 | 100 | 4.6 | 1 | 33.2 | |||||
2 AV驾驶模式 | 自动驾驶模式 | 66.6 | 58.7 | 34.2 | 70.6 | ||||
传统模式 | 33.4 | 41.3 | 65.8 | 29.4 | |||||
3 AV碰撞前的 状态 | 停车 | 90.3 | 8.6 | 0 | 37.3 | ||||
直行 | 1 | 43.2 | 48 | 50.2 | |||||
转弯 | 1.6 | 21.7 | 10.6 | 8.3 | |||||
倒车 | 1.2 | 0 | 22.4 | 0 | |||||
减速/减速停车 | 0 | 20.5 | 6.6 | 4.2 | |||||
变道 | 0.6 | 4.4 | 0 | 0 | |||||
停车/泊车 | 5.3 | 0 | 3.5 | 0 | |||||
其他行驶状态 | 0 | 1.6 | 8.8 | 0 | |||||
4 AV碰撞类型 | 追尾 | 59.7 | 44.6 | 11.7 | 29.4 | ||||
侧刮 | 22.7 | 25.4 | 30.9 | 20.8 | |||||
侧撞 | 8.2 | 13.3 | 0 | 12.5 | |||||
正面碰撞 | 7 | 10.2 | 5.8 | 16.6 | |||||
撞物 | 0 | 5.4 | 27.7 | 20.8 | |||||
其他类型 | 2.3 | 1.1 | 23.9 | 0 | |||||
5 AV损坏程度 | 未损坏 | 5.9 | 5.2 | 11.5 | 4 | ||||
轻度 | 76.9 | 75.3 | 76.7 | 71 | |||||
中度 | 14.8 | 17.2 | 9 | 20.8 | |||||
重度 | 2.3 | 2.3 | 2.9 | 4.2 | |||||
6 CV碰撞前的 状态 | 停车 | 0 | 2.3 | 11 | 0 | ||||
直行 | 59.1 | 52.9 | 0 | 16.8 | |||||
转弯 | 5.7 | 16 | 0 | 16.6 | |||||
倒车 | 13 | 0 | 2.4 | 12.3 | |||||
减速/减速停车 | 4.7 | 1.3 | 0 | 0 | |||||
变道 | 2.9 | 8.9 | 0 | 12.4 | |||||
停车/泊车 | 1.2 | 0 | 34.1 | 4.4 | |||||
超越其他车辆 | 6.5 | 2.5 | 2.4 | 0 | |||||
其他行驶状态 | 7 | 16.2 | 50.1 | 37.4 | |||||
7 VRU | 否 | 89.7 | 88 | 90 | 100 | ||||
是 | 10.3 | 12 | 10 | 0 | |||||
8人员受伤程度 | 未受伤 | 88.2 | 88.9 | 96.1 | 100 | ||||
受伤 | 11.8 | 11.1 | 3.9 | 0 | |||||
9天气 | 晴朗 | 91.3 | 90.2 | 78 | 0 | ||||
多云 | 6.8 | 8.6 | 22 | 5.2 | |||||
雨天 | 1.3 | 0.6 | 0 | 94.8 | |||||
雾天 | 0.6 | 0.6 | 0 | 0 | |||||
10照明 | 日光 | 69.5 | 68.1 | 68.6 | 37.5 | ||||
黎明 | 2.9 | 1.3 | 5.8 | 0 | |||||
路灯 | 27.5 | 27.5 | 25.6 | 62.5 | |||||
无路灯 | 0 | 3.2 | 0 | 0 | |||||
11路面情况 | 干燥 | 97 | 100 | 96.5 | 0 | ||||
潮湿 | 3 | 0 | 3.5 | 100 | |||||
12道路情况 | 坑洞 | 0 | 0 | 2.4 | 0 | ||||
障碍物 | 0 | 0 | 1.2 | 8.3 | |||||
狭窄 | 0.6 | 0.6 | 2.3 | 0 | |||||
其他道路情况 | 1.2 | 0 | 9.4 | 0 | |||||
无异常 | 98.2 | 99.4 | 84.7 | 91.7 | |||||
13发生地点 | 十字路口/交叉路口 | 52.5 | 51.4 | 23.3 | 53.6 | ||||
直行道路 | 21.8 | 28.1 | 45.2 | 25.9 | |||||
停车场 | 3.5 | 1.3 | 14.1 | 8.2 | |||||
汇入汇出路口 | 6.4 | 17.1 | 0 | 12.3 | |||||
路边停车位 | 15.8 | 2.1 | 17.4 | 0 |
[1] |
赵晓华, 陈浩林, 李振龙, 等. 不同情景下自动驾驶接管行为的影响特征[J]. 中国公路学报, 2022, 35(9):195-214.
doi: 10.19721/j.cnki.1001-7372.2022.09.015 |
doi: 10.19721/j.cnki.1001-7372.2022.09.015 |
|
[2] |
郭延永, 刘佩, 袁泉, 等. 网联自动驾驶车辆道路交通安全研究综述[J]. 交通运输工程学报, 2023, 23(5):19-38.
|
|
|
[3] |
陈吉清, 翁楚滨, 兰凤崇. 智能车辆换道潜在冲突分析与风险量化方法[J]. 汽车工程, 2021, 43(11):1565-1576,1 586.
|
|
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
杨文臣, 周燕宁, 田毕江, 等. 基于聚类分析和SVM的二级公路交通事故严重度预测[J]. 中国安全科学学报, 2022, 32(5):163-169.
doi: 10.16265/j.cnki.issn1003-3033.2022.05.1263 |
doi: 10.16265/j.cnki.issn1003-3033.2022.05.1263 |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
杨慧敏, 石琴, 陈一锴, 等. 基于混合聚类的农村公路单车事故影响因素分析[J]. 中国安全科学学报, 2020, 30(8):129-136.
doi: 10.16265/j.cnki.issn1003-3033.2020.08.019 |
doi: 10.16265/j.cnki.issn1003-3033.2020.08.019 |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
罗崎瑞, 张道文, 周华, 等. 面向智能汽车预期功能安全的驾驶场景评价[J]. 中国安全科学学报, 2022, 32(8):140-145.
doi: 10.16265/j.cnki.issn1003-3033.2022.08.1768 |
doi: 10.16265/j.cnki.issn1003-3033.2022.08.1768 |
|
[19] |
|
[20] |
|
[1] | WANG Feiyin, YUAN Jintong, LIU Xiaochen, TAN Wei, WANG Lei. Pattern identification and risk assessment model of civil aircraft abnormal flight based on QAR [J]. China Safety Science Journal, 2025, 35(2): 160-167. |
[2] | ZHOU Yang, CHEN Yunxing, WU Ling. Research on vehicle hazardous cut-in strategy used in autonomous driving test [J]. China Safety Science Journal, 2025, 35(1): 112-119. |
[3] | LI Shasha, CUI Tiejun. A method to determine distribution of different class objects in process of system fault evolution [J]. China Safety Science Journal, 2024, 34(7): 1-7. |
[4] | HU Zhenghua, ZHOU Jibiao, GUO Xu, MA Changxi. Allocation of traffic police resources based on queuing theory [J]. China Safety Science Journal, 2024, 34(7): 178-185. |
[5] | ZHAO Yaohua, CHEN Yanzhan, ZHENG Liang, LI Shukai. Collision scenario construction and simulation analysis for autonomous driving safety testing [J]. China Safety Science Journal, 2024, 34(7): 211-218. |
[6] | YUE Rentian, YANG Guoguo. K-means clustering and analysis of operation stability for control sector [J]. China Safety Science Journal, 2024, 34(7): 98-104. |
[7] | WANG Lili, GU Qiuli. Study on multidimensional quantification of individual workload of controllers [J]. China Safety Science Journal, 2024, 34(6): 1-9. |
[8] | HU Liwei, HE Yu, HOU Zhi, ZHANG Ruijie, CHEN Chen, LIU Bing. Multi-dimensional coupling study on traffic accident risk of highway in mountainous areas [J]. China Safety Science Journal, 2024, 34(5): 17-27. |
[9] | ZHANG Mingfang, MA Yanhua, MA Yong. Influencing factors on severity of vehicle-pedestrian conflict at unsignalized intersections [J]. China Safety Science Journal, 2023, 33(8): 190-197. |
[10] | CHEN Jiaona, JIN Yinli, TAO Weijun, LI Daofeng. Research on mediating effect of express way accident duration based on text information [J]. China Safety Science Journal, 2023, 33(4): 155-162. |
[11] | WANG Lili, XU Lingpeng. Evaluation of air traffic controller's attention characteristics based on eye movement data [J]. China Safety Science Journal, 2023, 33(2): 217-224. |
[12] | LUO Qirui, ZHANG Daowen, ZHOU Hua, PANG Shaorong, LI Xiaoyan, WANG Chaojian. Evaluation on driving scenarios for safety of intended functionality of intelligent vehicles [J]. China Safety Science Journal, 2022, 32(8): 140-145. |
[13] | YANG Wenchen, ZHOU Yanning, TIAN Bijiang, GUO Fengxiang, HU Chengyu. Traffic accident severity prediction for secondary highways based on cluster analysis and SVM model [J]. China Safety Science Journal, 2022, 32(5): 163-169. |
[14] | QIU Ji, WANG Hong, JIANG Ruoxi, XIAO Wenbin, CHANG Hongguang, ZHU Shunying. Identification and analysis of serious conflicts in expressway transition areas [J]. China Safety Science Journal, 2022, 32(2): 184-191. |
[15] | YANG Lichao, LIU Jingxian, LIU Zhao, LIU Yiwei. Association rules mining of water traffic accidents causation under value attenuation [J]. China Safety Science Journal, 2022, 32(10): 127-134. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||