[1] |
TAN Yuherng, LAI Shupeng, WANG Kangli, et al. Cooperative control of multiple unmanned aerial systems for heavy duty carrying[J]. Annual Reviews in Control, 2018, 46:44-57.
doi: 10.1016/j.arcontrol.2018.07.001
|
[2] |
赵嶷飞, 郑雨欣. 城市物流无人机飞行任务剖面构建与优化[J]. 飞行力学, 2021, 39(3):54-59,67.
|
|
ZHAO Yifei, ZHENG Yuxin. Construction and optimization of flight mission profile of urban logistics UAV[J]. Flight Dynamics, 2021, 39(3):54-59,67.
|
[3] |
KOH C H, LOW K H, LI Lei, et al. Weight threshold estimation of falling UAVs (Unmanned Aerial Vehicles) based on impact energy[J]. Transportation Research Part C Emerging Technologies, 2018, 93:228-255.
doi: 10.1016/j.trc.2018.04.021
|
[4] |
WASHINGTON A, CLOTHIER R A, SILVA J. A review of unmanned aircraft system ground risk models[J]. Progress in Aerospace Sciences, 2017, 95:24-44.
doi: 10.1016/j.paerosci.2017.10.001
|
[5] |
ANDERS L C. Ground impact probability distribution for small unmanned aircraft in ballistic descent[C]. 2020 International Conference on Unmanned Aircraft Systems (ICUAS), 2020:1442-1451.
|
[6] |
LEVASSEUR B, BERTRAND S, RABALLAND N. Efficient generation of ground impact probability maps by neural networks for risk analysis of UAV missions[C]. 2020 International Conference on Unmanned Aircraft Systems (ICUAS), 2020:1398-1406.
|
[7] |
张泽京, 张曙光, 柳旭, 等. 无人机系统安全目标水平预估方法[J]. 航空动力学报, 2018, 33(4):1017-1024.
|
|
ZHANG Zejing, ZHANG Shuguang, LIU Xu, et al. Estimated method of target level of safety for unmanned aircraft system[J]. Journal of Aerospace Power, 2018, 33(4): 1017-1024.
|
[8] |
韩鹏, 张冰玉. 航迹误差对无人机坠地伤人风险评估的影响[J]. 中国安全科学学报, 2021, 31(2):106-111.
doi: 10.16265/j.cnki.issn 1003-3033.2021.02.015
|
|
HAN Peng, ZHANG Bingyu. Effect of track error on safety risk assessment of UAV ground impact[J]. China Safety Science Journal, 2021, 31(2): 106-111.
doi: 10.16265/j.cnki.issn 1003-3033.2021.02.015
|
[9] |
韩鹏, 张冰玉. 基于改进蚁群算法的无人机安全航路规划研究[J]. 中国安全科学学报, 2021, 31(1):24-29.
doi: 10.16265/j.cnki.issn 1003-3033.2021.01.004
|
|
HAN Peng, ZHANG Bingyu. Safety route planning of UAV based on improved ant colony algorithm[J]. China Safety Science Journal, 2021, 31(1): 24-29.
doi: 10.16265/j.cnki.issn 1003-3033.2021.01.004
|
[10] |
胡莘婷, 戴福青. 基于城区行人安全的无人机运行风险评估[J]. 中国安全科学学报, 2020, 30(8):137-142.
doi: 10.16265/j.cnki.issn1003-3033.2020.08.020
|
|
HU Xinting, DAI Fuqing. Risk assessment model for UAV operation considering safety of ground pedestrians in urban areas[J]. China Safety Science Journal, 2020, 30(8): 137-142.
doi: 10.16265/j.cnki.issn1003-3033.2020.08.020
|
[11] |
ANCEL E, CAPRISTAN F M, FOSTER J V, et al. Real-time risk assessment framework for unmanned aircraft system (UAS) traffic management (UTM)[C]. Aiaa Aviation Technology, Integration, & Operations Conference, 2017:3273-3289.
|
[12] |
李寰宇, 陈延龙, 张振兴, 等. 基于Dubins的无人机自动避撞路径规划[J]. 飞行力学, 2020, 38(5):44-49.
|
|
LI Huanyu, CHEN Yanlong, ZHANG Zhenxing, et al. UAV collision avoidance path planning based on Dubins method[J]. Flight Dynamics, 2020, 38(5):44-49.
|
[13] |
WAGGONER B. Developing a risk assessment tool for unmanned aircraft system operations[D]. Washingtan: University of Washington, 2010.
|
[14] |
DALAMAGKIDIS K, VALAVANIS K P, PIEGL L A. Evaluating the risk of unmanned aircraft ground impacts[C]. Control and Automation, 2008 16th Mediterranean Conference on. IEEE, 2008:709-716.
|
[15] |
闫少琨. 无人机运行安全风险评价[D]. 天津: 中国民航大学, 2018.
|
|
YAN Shaokun. Evaluating the risk of unmanned aircraft operation[D]. Tianjin: Civil Aviation University of China, 2018.
|
[16] |
ZHOU Q, XU M. Research on risk assessment of UAV to buildings[C]. 2021 International Conference on Information Control, Electrical Engineering and rail Transit (ICEERT), 2021: 37-40.
|