[1] |
王国法, 刘峰, 孟祥军, 等. 煤矿智能化(初级阶段)研究与实践[J]. 煤炭科学技术, 2019, 47(8): 1-36.
|
|
WANG Guofa, LIU Feng, MENG Xiangjun, et al. Research and practice on intelligent coal mine construction(primary stage)[J]. Coal Science and Technology, 2019, 47(8): 1-36.
|
[2] |
宋选民, 朱德福, 王仲伦, 等. 我国煤矿综放开采40年:理论与技术装备研究进展[J]. 煤炭科学技术, 2021, 49(3): 1-29.
|
|
SONG Xuanmin, ZHU Defu, WANG Zhonglun, et al. Advances on longwall fully-mechanized top-coal caving mining technology in China during past 40 years: theory,equipment and approach[J]. Coal Science and Technology, 2021, 49(3): 1-29.
|
[3] |
LIU Yin, WEN Hu, GUO Jun, et al. Coal spontaneous combustion and N 2 suppression in triple goafs: a numerical simulation and experimental study[J]. Fuel, 2020, 271: DOI: 10.1016/j.fuel.2020.
doi: 10.1016/j.fuel.2020
|
[4] |
朱珍, 何满潮, 王琦, 等. 柠条塔煤矿自动成巷无煤柱开采新方法[J]. 中国矿业大学学报, 2019, 48(1): 46-53.
|
|
ZHU Zhen, HE Manchao, WANG Qi, et al. An innovative non-pillar mining method for gateroad formation automatically and its application in Ningtiaota coal mine[J]. Journal of China University of Mining & Technology, 2019, 48(1): 46-53.
|
[5] |
SHAO Zhenlu, WANG Deming, WANG Yanming, et al. Theory and application of magnetic and self-potential methods in the detection of the Heshituoluogai coal fire, China[J]. Journal of Applied Geophysics, 2014, 104: 64-74.
doi: 10.1016/j.jappgeo.2014.02.014
|
[6] |
ZHOU Bin, WU Jianming, WANG Junfeng, et al. Surface-based radon detection to identify spontaneous combustion areas in small abandoned coal mine gobs: case study of a small coal mine in China[J]. Process Safety and Environmental Protection, 2018, 119: 223-232.
doi: 10.1016/j.psep.2018.08.011
|
[7] |
WEN Hu, YU Zhijin, DENG Jun, et al. Spontaneous ignition characteristics of coal in a large-scale furnace: an experimental and numerical investigation[J]. Applied Thermal Engineering, 2017, 114: 583-592.
doi: 10.1016/j.applthermaleng.2016.12.022
|
[8] |
于志金, 文虎, 陈晓坤, 等. 大型煤自燃试验的火源演化特征模拟[J]. 煤炭科学技术, 2017, 45(1): 89-93,141.
|
|
YU Zhijin, WEN Hu, CHEN Xiaokun, et al. Simulation on ignition source evolution features of large scale coal spontaneous combustion experiment[J]. Coal Science and Technology, 2017, 45(1): 89-93,141.
|
[9] |
秦汝祥, 陶远, 唐明云, 等. 近巷高温区域红外探测与反演[J]. 煤炭学报, 2014, 39(增1): 112-116.
|
|
QIN Ruxiang, TAO Yuan, TANG Mingyun, et al. Detecting and inversing high temperature area of near roadway with infrared thermal imaging[J]. Journal of China Coal Society, 2014, 39(S1): 112-116.
|
[10] |
李鑫, 杨桢, 代爽, 等. 受载复合煤岩破裂表面红外辐射温度变化规律[J]. 中国安全科学学报, 2017, 27(1): 110-115.
doi: 10.16265/j.cnki.issn1003-3033.2017.01.020
|
|
LI Xin, YANG Zhen, DAI Shuang, et al. Variation routine of surface infrared radiation temperature of composite coal rock in fracture under load[J]. China Safety Science Journal, 2017, 27(1): 110-115.
doi: 10.16265/j.cnki.issn1003-3033.2017.01.020
|
[11] |
文虎, 马民, 费金彪. 基于红外成像技术的煤矿火灾治理[J]. 煤炭科学技术, 2010, 38(1): 28-30.
|
|
WEN Hu, MA Min, FEI Jinbiao. Mine fire disaster control based on infrared imaging technology[J]. Coal Science and Technology, 2010, 38(1): 28-30.
|
[12] |
牟义. 神府矿区隐蔽采空区相关致灾因素分析及勘查技术[J]. 地球物理学进展, 2020, 35(3): 1017-1024.
|
|
MU Yi. Analysis of disaster-causing factors and exploration techniques in concealed mined areas in Shenfu mining area[J]. Progress in Geophysics, 2020, 35(3): 1017-1024.
|
[13] |
牛会永, 刘轶康, 聂琦苗, 等. 浸水加温条件下煤电性参数特征试验研究[J]. 中国安全科学学报, 2020, 30(9): 37-42.
|
|
NIU Huiyong, LIU Yikang, NIE Qimiao, et al. Experimental study on characteristics of coal electrical parameters under water immersion and heating[J]. China Safety Science Journal, 2020, 30(9): 37-42.
|
[14] |
曹凯. 地质雷达探测技术在浅地表煤田火灾治理中的应用[J]. 能源技术与管理, 2016, 41(5): 162-164.
|
|
CAO Kai. Application of geological radar detection technology in fire control of shallow surface coal field[J]. Energy Technology and Management, 2016, 41(5): 162-164.
|
[15] |
万建华, 于长春, 熊盛青, 等. 氡气法反演燃烧煤层深度新方法[J]. 物探与化探, 2007, 31(6): 556-559.
|
|
WAN Jianhua, YU Changchun, XIONG Shengqing, et al. A new calculation method for the depth of the burning coal seam based on radon gas measurement[J]. Geophysical and Geochemical Exploration, 2007, 31(6): 556-559.
|
[16] |
费金彪, 文虎, 金永飞. 测氡法在浅埋煤层火区探测中的应用[J]. 西安科技大学学报, 2018, 38(1): 26-30.
|
|
FEI Jinbiao, WEN Hu, JIN Yongfei. Application of radon method in detection of fire area in shallow coal seam[J]. Journal of Xi'an University of Science and Technology, 2018, 38(1): 26-30.
|
[17] |
张俊英, 方熙杨, 王海宾, 等. 基于同位素测氡的煤矿火区圈划方法对比研究[J]. 中国安全科学学报, 2021, 31(1): 38-44.
doi: 10.16265/j.cnki.issn 1003-3033.2021.01.006
|
|
ZHANG Junying, FANG Xiyang, WANG Haibin, et al. Comparative study of coal mine fire areas zoning methods based on isotopic radon measurement technique[J]. China Safety Science Journal, 2021, 31(1): 38-44.
doi: 10.16265/j.cnki.issn 1003-3033.2021.01.006
|
[18] |
张曦, 戴广龙, 聂士斌, 等. 应用能位测定法和SF6示踪技术检测孤岛工作面小煤柱漏风状态[J]. 矿业安全与环保, 2016, 43(5): 41-44.
|
|
ZHANG Xi, DAI Guanglong, NIE Shibin, et al. Air leakage measurement of narrow coal pillar in island working face by energy level and SF6 tracer test[J]. Mining Safety & Environmental Protection, 2016, 43(5): 41-44.
|
[19] |
叶庆树, 戴广龙, 李鹏, 等. 基于双示踪技术浅埋煤层采空区地表漏风规律研究[J]. 煤炭工程, 2020, 52(7): 83-87.
|
|
YE Qingshu, DAI Guanglong, LI Peng, et al. Air leakage law of surface above shallow coal seam goaf based on dual-element tracing[J]. Coal Engineering, 2020, 52(7): 83-87.
|
[20] |
岳宁芳, 金彦, 孙明福, 等. 基于多指标气体的煤自燃进程分级预警研究[J]. 安全与环境学报, 2020, 20(6): 2139-2146.
|
|
YUE Ningfang, JIN Yan, SUN Mingfu, et al. Multi-staged warning system for controlling the coal spontaneous combustion based on the various index gases[J]. Journal of Safety and Environment, 2020, 20(6): 2139-2146.
|
[21] |
文虎, 赵向涛, 王伟峰, 等. 不同煤体自燃指标性气体函数模型特征分析[J]. 煤炭转化, 2020, 43(1): 16-25.
|
|
WEN Hu, ZHAO Xiangtao, WANG Weifeng, et al. Analysis on characteristics of indicator gases of spontaneous combustion of different coals[J]. Coal Conversion, 2020, 43(1): 16-25.
|
[22] |
郭军, 程小蛟, 武剑, 等. 易自燃厚煤层工作面自然发火CO预测及防治[J]. 中国安全生产科学技术, 2018, 14(4): 75-81.
|
|
GUO Jun, CHENG Xiaojiao, WU Jian, et al. CO prediction and control of spontaneous combustion in mining face of thick coal seam inclined to spontaneous combustion[J]. Journal of Safety Science and Technology, 2018, 14(4): 75-81.
|
[23] |
刘厦, 刘石, 任婷. 基于SA-ELM的声学层析成像温度分布重建算法[J]. 化工学报, 2017, 68(6): 2434-2446.
|
|
LIU Sha, LIU Shi, REN Ting. SA-ELM based method for reconstructing temperature distribution in acoustic tomography measurement[J]. CIESC Journal, 2017, 68(6): 2434-2446.
|
[24] |
靳玉萍, 张兵. 基于非稳态对流扩散方程高阶紧致差分的煤自燃数值模拟[J]. 科学技术与工程, 2014, 14(14): 27-32,37.
|
|
JIN Yuping, ZHANG Bing. Study on numerical simulation of spontaneous combustion coal arounda high-order compact difference scheme for unsteady convection diffusion equation[J]. Science Technology and Engineering, 2014, 14(14): 27-32,37.
|
[25] |
刘振岭, 郑忠亚. 采空区煤体自燃温度场演变模拟试验研究[J]. 煤炭科学技术, 2020, 48(8): 114-120.
|
|
LIU Zhenling, ZHENG Zhongya. Simulation test study on temperature field evolution of coal spontaneous combustion in gob[J]. Coal Science and Technology, 2020, 48(8): 114-120.
|
[26] |
褚廷湘, 李品, 余明高. 工作面推进下采空区煤自燃进程的动态模拟研究[J]. 中国矿业大学学报, 2019, 48(3): 529-537.
|
|
CHU Tingxiang, LI Pin, YU Minggao. Dynamic simulation of coal spontaneous combustion in gob under working face advancing[J]. Journal of China University of Mining & Technology, 2019, 48(3): 529-537.
|
[27] |
张九零, 陈庆亚, 王月红. 采空区多参数流-固耦合温度场模拟研究[J]. 中国煤炭, 2014, 40(8): 101-106.
|
|
ZHANG Jiuling, CHEN Qingya, WANG Yuehong. Numerical simulation of multi-parameter fluid-solid coupling temperature field in goaf[J]. China Coal, 2014, 40(8): 101-106.
|
[28] |
王振平, 程卫民, 辛嵩, 等. 煤巷近距离自燃火源位置的红外探测与反演[J]. 煤炭学报, 2003, 28(6): 603-607.
|
|
WANG Zhenping, CHENG Weimin, XIN Song, et al. The calculation of close-range coal inflammation position at coal-roads based on ifrared detecting and inverse heat conduction technology[J]. Journal of China Coal Society, 2003, 28(6): 603-607.
|
[29] |
赵颖杰. 煤矿采空区火源点定位方法及应用研究[D]. 徐州: 中国矿业大学, 2015.
|
|
ZHAO Yingjie. Research on localization method of fire source in mine goaf[D]. Xuzhou: China University of Mining and Technology, 2015.
|
[30] |
陈冠男. 声学法仓储粮食温度检测关键技术的研究[D]. 沈阳: 沈阳工业大学, 2012.
|
|
CHEN Guannan. The study on key technology of acoustic temperature measurement in stored grain[D] Shenyang: Shenyang University of Technology, 2012.
|
[31] |
CHEN Chen, YANG Kunde, DUAN Rui, et al. Acoustic propagation analysis with a sound speed feature model in the front area of Kuroshio Extension[J]. Applied Ocean Research, 2017, 68: 1-10.
doi: 10.1016/j.apor.2017.08.001
|
[32] |
王利军. 基于超声波炉膛高温测量系统的研究[D]. 北京: 华北电力大学, 2012.
|
|
WANG Lijun. Study of measurement of the temperature using ultrasonic[D]. Beijing: North China Electric Power University, 2012.
|