中国安全科学学报 ›› 2024, Vol. 34 ›› Issue (9): 138-144.doi: 10.16265/j.cnki.issn1003-3033.2024.09.1816

• 安全工程技术 • 上一篇    下一篇

纵向通风下锂离子电池热失控气体扩散特性

王志1,2(), 殷波1, 史波波1, 余先宇1   

  1. 1 中国矿业大学 安全工程学院,江苏 徐州 221116
    2 中国矿业大学 江苏省城市地下空间火灾防护高校重点实验室,江苏 徐州 221116
  • 收稿日期:2024-03-15 修回日期:2024-06-20 出版日期:2024-09-28
  • 作者简介:

    王 志 (1990—),男,河南南阳人,博士,副教授,主要从事火灾动力学、锂离子电池火灾安全等方面的研究。E-mail:

    史波波, 副教授

  • 基金资助:
    火灾科学国家重点实验室开放课题(HZ2024-KF03); 国家自然科学基金青年科学基金资助(52204253); 民机火灾科学与安全工程四川省重点实验室开放基金资助(MZ2023KF06); 中国博士后科学基金面上项目资助(2023M733766)

Diffusion characteristics of thermal runaway gas from lithium-ion batteries under longitudinal ventilation

WANG Zhi1,2(), YIN Bo1, SHI Bobo1, YU Xianyu1   

  1. 1 School of Safety Engineering, China University of Mining and Technology, Xuzhou Jiangsu 221116, China
    2 Jiangsu Key Laboratory of Fire Safety in Urban Underground Space, China University of Mining and Technology, Xuzhou Jiangsu 221116, China
  • Received:2024-03-15 Revised:2024-06-20 Published:2024-09-28

摘要:

为探究井下巷道中纵向通风对锂离子电池热失控气体扩散的影响,利用计算流体力学软件Fluent建立不同纵向风速下的二维扩散模型。结果表明:纵向通风抑制气体入口上风侧热失控气体的扩散,促进下风侧热失控气体的扩散;当纵向风速为3 m/s时,热失控气体扩散到出口边界所用时间约是无风时的0.4倍;在相同扩散时间内,随着纵向风速的增大,在计算域内形成的扩散范围越大;爆炸范围随着扩散时间的增大基本呈现先增大后减小的趋势;在0.25~3 m/s纵向风速下,最大爆炸范围随着纵向风速的增大而增大;纵向风速为0.75 m/s时最大危险范围最小,为6.79 m2;0.5~0.75 m/s范围内的纵向风速对巷道中热失控气体的稀释扩散效果最佳。

关键词: 纵向通风, 锂离子电池, 热失控气体, 气体扩散, 纵向风速, 巷道, 爆炸范围

Abstract:

A two-dimensional diffusion model was developed using the computational fluid dynamics software Fluent across various longitudinal wind speeds to examine the impact of longitudinal ventilation in underground tunnels on the dispersion of thermal runaway gases from lithium-ion batteries. The findings demonstrate that the diffusion of thermal runaway gas on the upwind side of the gas inlet is restricted by longitudinal ventilation, while it is enhanced on the downwind side. At a wind speed of 3 m/s, the time it takes for thermal runaway gas to diffuse to the exit boundary in about 40% that when there is no wind. Moreover, increasing wind speed within the computational domain results in a larger diffusion area under the same diffusion time. The expansion of the explosion area generally exhibits an increasing-then-decreasing trend as diffusion time advances. In the wind speed range of 0.25-3 m/s, the maximum explosion area grows proportionally with wind speed, forming an exponential relationship. Notably, the maximum hazardous area reaches a minimum of 6.79 m2 at a wind speed of 0.75 m/s. Considering the maximum explosion range, wind speeds between 0.5 and 0.75 m/s appear optimal for diluting and diffusing thermal runaway gas in the tunnel.

Key words: longitudinal ventilation, lithium-ion battery, thermal runaway gas, gas diffusion, longitudinal wind velocity, tunnel, explosion area

中图分类号: