中国安全科学学报 ›› 2023, Vol. 33 ›› Issue (8): 125-133.doi: 10.16265/j.cnki.issn1003-3033.2023.08.1857

• 安全工程技术 • 上一篇    下一篇

巷道围岩调热圈分布特性研究:以羊场湾煤矿为例

张健1,2,3(), 张鹏妍1, 魏建平1,2,3, SI Guangyao4, 许博1, 许振国1   

  1. 1 河南理工大学 安全科学与工程学院,河南焦作 454003
    2 河南理工大学 河南省瓦斯地质与瓦斯治理重点实验室,河南 焦作 454003
    3 煤炭安全生产与清洁创新高效利用省部共建协同创新中心,河南 焦作 454003
    4 新南威尔士大学 矿业与能源资源学院,澳大利亚 悉尼 NSW 2052
  • 收稿日期:2023-02-14 修回日期:2023-05-17 出版日期:2023-10-08
  • 作者简介:

    张健 (1988—),男,河南商丘人,博士,副教授,主要从事矿井火灾及粉尘防治等方面的教学和研究工作。E-mail:

    魏建平 教授

    SI Guangyao 讲师

  • 基金资助:
    国家自然科学基金资助(52174171); 河南理工大学安全与能源工程学部“双一流”学科创建工程项目(AQ20230741); 河南省高校大学生创新创业训练计划项目(202210460077)

Study on distribution character of heat regulating ring in roadway surrounding rock: taking Yangchangwan coal mine as an example

ZHANG Jian1,2,3(), ZHANG Pengyan1, WEI Jianping1,2,3, SI Guangyao4, XU Bo1, XU Zhenguo1   

  1. 1 School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo Henan 454003,China
    2 School of State Key Laboratory Cultivation Base for Gas Control, Henan Polytechnic University, Jiaozuo Henan 454003,China
    3 State Collaborative Innovation Center of Coal Work Safety and Clean-efficiency Utilization, Jiaozuo Henan 454003,China
    4 School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney NSW 2052, Australia
  • Received:2023-02-14 Revised:2023-05-17 Published:2023-10-08

摘要:

为了研究矿井巷道围岩温度场的分布情况,首先在羊场湾煤矿13采区回风下山937高程附近,利用深孔测温技术测定围岩温度,同时测定具有代表性的岩石热物性参数;然后利用COMSOL软件建立数值模型,模拟巷道围岩的温度场;最后通过改变通风时间和风流特性,分析其对该巷道调热圈温度场的影响。结果表明:通过深孔测温可知该巷道原始岩温为28.3 ℃,调热圈半径为32 m;通过数值模拟可知:其调热圈半径为30.9 m,与实测结果误差为3.4%。随着巷道通风时间的延长,围岩的扰动范围不断增加,围岩温度不断降低,且温度降低速率逐渐变缓;随着风流温度的降低,围岩温度也逐渐下降,且越靠近巷壁的围岩受风流温度的影响越明显;随着风流速度的增大,围岩温度会逐渐下降,当风速大于4 m/s时,围岩温度趋于稳定。

关键词: 巷道围岩, 调热圈, 温度场, 深孔测温, 热物性参数, 数值模拟

Abstract:

In order to study the distribution of the surrounding rock temperature field in the roadway, the surrounding rock temperature was measured by using the deep hole temperature measurement technology near the 937 elevation of return air downhill in 13 mining areas of Yangchangwan coal mine, and borehole sampling was conducted near 430 elevation in 13 mining areas to measure the thermophysical parameters of representative rocks Using COMSOL software to establish a numerical model, the temperature field of the surrounding rock of the tunnel is simulated and compared with the measured results. By changing the ventilation time and airflow characteristics, the influence on the tunnel temperature field was analyzed. The results show that the original rock temperature of the tunnel is 28.3 ℃ and the radius of the heat regulating ring is 32 m through deep hole temperature measurement. According to the numerical simulation, the radius of the heat regulating ring is 30.9 m, and the error with the measured result is 3.4%. With the prolongation of tunnel ventilation time, the disturbance range of surrounding rock increases continuously, and the surrounding rock temperature decreases continuously, and the temperature reduction rate gradually slows down. With the decrease of airflow temperature, the surrounding rock temperature also gradually decreases, and the surrounding rock closer to the roadway wall is affected more obviously by airflow temperature. With the increase of airflow velocity, the surrounding rock temperature will gradually decrease. When the wind speed is greater than 4 m/s, the surrounding rock temperature tends to be stable. The research results can provide a reference for ventilation design and heat damage control of the mine.

Key words: roadway surrounding rock, heat regulating ring, temperature field, deep hole temperature measurement, thermal physical parameters, numerical simulation