[1] |
闫金定. 锂离子电池发展现状及其前景分析[J]. 航空学报, 2014, 35(10): 2767-2775.
doi: 10.7527/S1000-6893.2014.0166
|
|
YAN Jinding. Current status and development analysis of lithium-ion batteries[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10): 2767-2775.
doi: 10.7527/S1000-6893.2014.0166
|
[2] |
刘卫东. 高温环境对煤矿井下作业人员影响的调查研究[J]. 中国安全生产科学技术, 2007, 3(3): 43-45.
|
|
LIU Weidong. Survey of effect for coal mine workers in heat stress[J]. Journal of Safety Science and Technology, 2007, 3(3): 43-45.
|
[3] |
顾万选, 郭韵. 储能电站中锂电池的液冷结构设计及优化[J]. 中外能源, 2022(8):94-99.
|
|
GU Wanxuan, GUO Yun. Design and optimization of liquid cooling structure of lithium battery in energy storage power station[J]. Sino-Global Energy, 2022(8):94-99.
|
[4] |
郎春艳. 低温环境下锂离子电池组热管理系统研究[D]. 广州: 华南理工大学, 2016.
|
|
LANG Chunyan. A study on the performance of lithium-ion battery packthermal management system in case of low-temperature[D]. Guangzhou: South China University of Technology, 2016.
|
[5] |
许令顺, 张华标, 武义锋, 等. 低温技术在太空监测领域的应用[J]. 低温工程, 2013(3): 52-57.
|
|
XU Lingshun, ZHANG Huabiao, WU Yifeng, et al. Application of cryogenics in the field of space survey[J]. Cryogenics, 2013(3): 52-57.
|
[6] |
夏一冕, 刘智, 常增花, 等. 高镍三元/硅氧碳软包电池在不同温度下的日历老化机制[J]. 材料工程, 2023, 51(9): 148-157.
doi: 10.11868/j.issn.1001-4381.2022.000351
|
|
XIA Yimian, LIU Zhi, CHANG Zenghua, et al. Calendar aging mechanism of NCM811/graphite SiOx pouch cells atdifferent temperatures[J]. Journal of Materials Engineering, 2023, 51(9): 148-157.
doi: 10.11868/j.issn.1001-4381.2022.000351
|
[7] |
吴正国, 张剑波, 李哲, 等. 锂离子电池加速老化温度应力的滥用边界[J]. 汽车安全与节能学报, 2018, 9(1): 99-109.
|
|
WU Zhengguo, ZHANG Jianbo, LI Zhe, et al. Aging abuse boundary of lithium-ion cell above room temperature[J]. Journal of Automotive Safety and Energy, 2018, 9(1): 99-109.
|
[8] |
ABADA S, PETIT M, LECOCQ A, et al. Combined experimental and modeling approaches of the thermal runaway of fresh and aged lithium-ion batteries[J]. Journal of Power Sources, 2018, 399: 264-273.
|
[9] |
WANG Zhi, WANG Jian. An experimental investigation of the degradation and combustion behaviors associated with lithium ion batteries after different aging treatments[J]. Journal of Cleaner Production, 2020, 272: DOI: 10.1016/j.jclepro.2020.122708.
|
[10] |
REN Dongshen, HSU Hungjen, LI Ruihe, et al. A comparative investigation of aging effects on thermal runaway behavior of lithium-ion batteries[J]. Etransportation, 2019, 2: DOI: 10.1016/j.etran.2019.100034.
|
[11] |
KONG Depeng, ZHAO Hengle, PING Ping, et al. Effect of low temperature on thermal runaway and fire behaviors of 18650 lithium-ion battery: a comprehensive experimental study[J]. Process Safety and Environmental Protection, 2023, 174: 448-459.
|
[12] |
ZHAO Luyao, ZHENG Minxue, ZHANG Junming, et al. Numerical modeling of thermal runaway for low temperature cycling lithium-ion batteries[J]. Journal of Energy Storage, 2023, 63: DOI: 10.1016/j.est.2023.107053.
|
[13] |
WU Senming, WANG Chang, LUAN Weiling, et al. Thermal runaway behaviors of Li-ion batteries after low temperature aging: experimental study and predictive modeling[J]. Journal of Energy Storage, 2023, 66: DOI: 10.1016/j.est.2023.107451.
|
[14] |
黄沛丰. 锂离子电池火灾危险性及热失控临界条件研究[D]. 合肥: 中国科学技术大学, 2018.
|
|
HUANG Peifeng. Research on the fire risk oflithium ion battery and thecritical condition of thermalrunaway behavior[D]. Hefei: University of Science and Technology of China, 2018.
|
[15] |
孙健. 受热对锂离子电池热安全性能的影响研究[D]. 广汉: 中国民用航空飞行学院, 2022.
|
|
SUN Jian. Study on the effect of heating on the thermal safety performance of lithium-ion battery[D]. Guanghan: Civil Aviation Flight University of China, 2022.
|
[16] |
LI Yi, LIU Kailong, FOLEY A M, et al. Data-driven health estimation and lifetime prediction of lithium-ion batteries: a review[J]. Renewable and Sustainable Energy Reviews, 2019, 113: DOI: 10.1016/j.rser.2019.109254.
|
[17] |
WANG Suijun, RAFIZ K, LIU Jialiang, et al. Effects of lithium dendrites on thermal runaway and gassing of LiFePO batteries[J]. Sustainable Energy & Fuels, 2020, 4(5): 2342-2351.
|
[18] |
DUBARRY M, DEVIE A. Battery durability and reliability under electric utility grid operations: representative usage aging and calendar aging[J]. Journal of Energy Storage, 2018, 18: 185-195.
|
[19] |
WANG Qingsong, PING Ping, ZHAO Xuejuan, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012, 208: 210-224.
|
[20] |
FRIESEN A, HORSTHEMKE F, MöNNIGHOFF X, et al. Impact of cycling at low temperatures on the safety behavior of 18650-type lithium ion cells: combined study of mechanical and thermal abuse testing accompanied by analysis[J]. Journal of Power Sources, 2016, 334: 1-11.
|
[21] |
FENG Xuning, REN Dongshen, ZHANG Shunchao, et al. Influence of aging paths on the thermal runaway features of lithium-ion batteries in accelerating rate calorimetry tests[J]. International Journal of Electrochemical Science, 2019, 14(1): 44-58.
|
[22] |
丁黎, 李帆, 蔡文嘉, 等. 锂离子电池的老化特性分析[J]. 电源技术, 2019, 43(1): 77-80.
|
|
D ING Li, LI Fan, CAI Wenjia, et al. Analysis on aging characteristics of lithium-ion batteries[J]. Chinese Journal of Power Sources, 2019, 43(1): 77-80.
|
[23] |
YANG Yong, HU Wenxuan, PENG Yufan, et al. Application of electrochemical impedance spectroscopy to degradation and aging research of lithium-ion batteries[J]. Journal of Physical Chemistry C, 2023: 127(9), 4 465-4 495.
|
[24] |
JAGUEMONT J, BOULON L, VENET P, et al. Lithium-ion battery aging experiments at subzero temperatures and model development for capacity fade estimation[J]. IEEE Transactions on Vehicular Technology, 2015, 65(6): 4328-4343.
|
[25] |
王志, 殷波, 史波波, 等. 纵向通风下锂离子电池热失控气体扩散特性[J]. 中国安全科学学报, 2024, 34(9): 138-144.
doi: 10.16265/j.cnki.issn1003-3033.2024.09.1816
|
|
WANG Zhi, YIN Bo, SHI Bobo, et al. Diffusion characteristics of thermal runaway gas from lithium-ion batteries under longitudinal ventilation[J]. China Safety Science Journal, 2024, 34(9): 138-144.
doi: 10.16265/j.cnki.issn1003-3033.2024.09.1816
|
[26] |
史波波, 沈王赵男, 王志, 等. 液氮抑制外部加热和过充锂电池模组热失控[J]. 中国安全科学学报, 2023, 33(10): 129-136.
doi: 10.16265/j.cnki.issn1003-3033.2023.10.0781
|
|
SHI Bobo, SHENG-WANG Zhaonan, WANG Zhi, et al. Liquid nitrogen suppresses thermal runaway of lithium-ion battery modules under external heating and overcharge[J]. China Safety Science Journal, 2023, 33(10): 129-136.
doi: 10.16265/j.cnki.issn1003-3033.2023.10.0781
|