[1] |
MIAO Yonghao, ZHAO Ming, LIANG Kaixuan, et al. Application of an improved mckda for fault detection of wind turbine gear based on encoder signal[J]. Renewable Energy, 2020,151:192-203.
|
[2] |
AN Fengping, WANG Jinrong. Rolling bearing fault diagnosis algorithm using overlapping group sparse-deep complex convolutional neural network[J]. Nonlinear Dynamics, 2022, 108(3):1-16.
|
[3] |
YOSHIOKA T, SHIMIZU S. Monitoring of ball bearing operation under grease lubrication using a new compound diagnostic system detecting vibration and acoustic emission[J]. Tribology & Lubrication Technology, 2010, 66(4):32-38.
|
[4] |
ZHENG Zhi, GE Xin. Fault feature extraction of hydraulic pumps based on symplectic geometry mode decomposition and power spectral entropy[J]. Entropy, 2019, 21(5):476-476.
|
[5] |
狄豪, 孙文磊, 武玉柱. EEMD结合概率神经网络的风力机轴承故障诊断研究[J]. 机械设计与制造, 2020(6):105-108.
|
|
DI Hao, SUN Wenlei, WU Yuzhu. Research on fault diagnosis for wind turbine based on EEMD and PNN[J]. Machine Design & Manufacture, 2020(6):105-108.
|
[6] |
李国华, 付振芳, 曾璇. EEMD联合SOM的电机滚动轴承故障诊断[J]. 噪声与振动控制, 2020, 40(4):87-91.
|
|
LI Guohua, FU Zhenfang, ZENG Xuan. Rolling bearing fault diagnosis based on EEMD and SOM[J]. Noise and Vibration Control, 2020, 40(4):87-91.
|
[7] |
唐贵基, 成彪, 王晓龙, 等. 快速路径优化引导ACMD的变转速轴承故障诊断[J]. 组合机床与自动化加工技术, 2023(2):55-59.
doi: 10.13462/j.cnki.mmtamt.2023.02.013
|
|
TANG Guiji, CHENG Biao, WANG Xiaolong, et al. Fault diagnosis of rolling bearing based on fast path optimization combined with ACMD under variable working conditions[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2023(2):55-59.
|
[8] |
高康平, 徐信芯, 焦生杰, 等. EEMD-ICA联合降噪的旋转机械故障信号检测方法[J]. 噪声与振动控制, 2022, 42(2):95-101.
|
|
GAO Kangping, XU Xinxin, JIAO Shengjie, et al. Fault signal detection method of rotating machinery based on eemd-ica joint denoising[J]. Noise and Vibration Control, 2012, 42(2):95-101.
|
[9] |
宁少慧, 韩振南, 武学峰, 等. EEMD和TFPF联合降噪法在齿轮故障诊断中的应用[J]. 振动测试与诊断, 2017, 37(5):1011-1 017.
|
|
NING Shaohui, HAN Zhennan, WU Xuefeng, et al. Application of combined TFPF and EEMD denoising method in gear fault diagnosis[J]. Journal of Vibration,Measurement & Diagnosis, 2017, 37(5):1011-1 017.
|
[10] |
黄鑫, 陈仁祥, 杨星, 等. 基于深度卷积神经网络与WPT-PWVD的轴承故障智能诊断[J]. 振动与冲击, 2020,39:236-243.
|
|
HUANG Xin, CHEN Renxiang, YANG Xing, et al. A bearing fault intelligent diagnosis method based on deep convolution neural network and WPT-PWVD[J]. Journal of Vibration and Shock, 2020,39:236-243.
|
[11] |
胡金良. 基于带式输送机的智能巡检研究[J]. 中国安全科学学报, 2023, 33(增1):85-90.
|
|
HU Jinliang. Intelligent inspection research based on belt conveyo[J]. China Safety Science Journal, 2023, 33(S1): 85-90.
doi: 10.16265/j.cnki.issn1003-3033.2023.S1.5001
|
[12] |
古莹奎, 汪源金, 石昌武. 基于EWM和SVR的滚动轴承剩余使用寿命预测方法[J]. 中国安全科学学报, 2023, 33(9):49-55.
doi: 10.16265/j.cnki.issn1003-3033.2023.09.2009
|
|
GU Yingkui, WANG Yuanjin, SHI Changwu. Remaining useful life prediction method of rolling bearing based on EWM and SVR[J]. China Safety Science Journal, 2023, 33(9): 49-55.
doi: 10.16265/j.cnki.issn1003-3033.2023.09.2009
|