中国安全科学学报 ›› 2024, Vol. 34 ›› Issue (S1): 156-164.doi: 10.16265/j.cnki.issn1003-3033.2024.S1.0037

• 安全工程技术 • 上一篇    下一篇

基于OVMD的托辊滚动轴承故障信号检测方法

马鹏飞(), 杨海鸥, 王世龙, 刘磊, 辛昊天   

  1. 国能宝日希勒能源有限公司 露天煤矿, 内蒙古 呼伦贝尔 021008
  • 收稿日期:2024-03-14 修回日期:2024-05-17 出版日期:2024-12-02
  • 作者简介:

    马鹏飞 (1986—),男,辽宁辽阳人,本科,工程师,主要从事煤矿设备管理维修智能化信息化方面的工作。E-mail:

    辛昊天, 工程师

Fault signal detection method of roller bearings based on OVMD

MA Pengfei(), YANG Haiou, WANG Shilong, LIU Lei, XIN Haotian   

  1. Open Pit Coal Mine, Guoneng Baolixile Energy Co., Ltd., Hulunbuir Inner Mongolia 021008, China
  • Received:2024-03-14 Revised:2024-05-17 Published:2024-12-02

摘要:

为解决露天矿带式输送机托辊轴承发生故障识别精度低的问题,提高故障诊断精确性以及效率,提出以优化的优化变分模态分解的方法为基础的混沌粒子群优化算法优化变分模态分解的托辊轴承故障信号检测方法。首先,应用CPSO的出色全局寻优特性,精确锁定变分模态分解算法的最适参数设定,实现对VMD的有效调参;然后,运用调参后的VMD技术处理振动数据,从中精准提取特定的频带信号成分;最后,配合稀疏最大谐波噪声比解卷积(SMHD)技术深度净化上述频带信号,显著增强带式输送机托辊轴承故障特征的辨识准确度。结果表明:CPSO对VMD改进相对于其余的VMD优化算法具有更加优越的性能;经过CPSO优化后的VMD算法结合SMHD对于滚动轴承在复杂工况下能够成功确认滚动轴承内圈以及外圈不易识别的具体故障点,并能判定轴承的具体损坏形态。

关键词: 优化变分模态分解(OVMD), 混沌粒子群优化算法(CPSO), 托辊轴承, 时域频域, 故障信号

Abstract:

The roller bearings of open pit belt conveyors face problems of low fault identification accuracy. To improve the accuracy and efficiency of fault diagnosis, a fault signal detection method of roller bearings with CPSO algorithm based on OVMD was proposed. Firstly, the excellent global optimization characteristics of CPSO were utilized, and the optimal parameter setting of the variational mode decomposition (VMD) algorithm was precisely locked to achieve effective parameter tuning of VMD. Then, VMD technology after parameter tuning was used to process the vibration data, and specific frequency band signal components were accurately extracted from the vibration data. Finally, the sparse maximum harmonic noise ratio deconvolution (SMHD) technology was used to purify the above frequency band signals, which significantly enhanced the identification accuracy of the fault characteristics of roller bearings of belt conveyors. The results show that CPSO has better performance for VMD improvement than other VMD optimization algorithms. The VMD algorithm after CPSO optimization combined with SMHD can successfully identify the specific fault points of the inner and outer rings of the rolling bearings under complex working conditions and determine the specific damage forms of the bearings.

Key words: optimized variational mode decomposition (OVMD), chaotic particle swarm optimization (CPSO), roller bearing, time domain and frequency domain, fault signal

中图分类号: