| [1] |
中华人民共和国国家卫生健康委员会. 国家卫生健康委员会2025年4月28日新闻发布会文字实录[EB/OL]. (2025-04-28). https://www.nhc.gov.cn/xcs/c100122/202504/33267e386e5e41498cca637aed41c6c5.shtml.
|
| [2] |
马世伟, 孔宪会, 阮志刚, 等. 基于事故树分析法的铁路隧道施工新发尘肺病关键控制环节研究[J]. 铁路节能环保与安全卫生, 2020, 10(6): 34-37.
|
|
MA Shiwei, KONG Xianhui, RUAN Zhigang, et al. Study on key control links of new pneumoconiosis in railway tunnel construction based on fault tree analysis[J]. Railway Energy Saving & Environmental Protection & Occupational Safety and Health, 2020, 10(6): 34-37.
|
| [3] |
马世伟, 孔宪会, 郭海峰, 等. 高原长大隧道尘肺病防治技术发展与应用研究[J]. 铁路节能环保与安全卫生, 2021, 11 (2): 41-44.
|
|
MA Shiwei, KONG Xianhui, GUO Haifeng, et al. Research on development and application of prevention and control technology of pneumoconiosis in long tunnel on plateau[J]. Railway Energy Saving & Environmental Protection & Occupational Safety and Health, 2021, 11 (2): 41-44.
|
| [4] |
郭春, 宋骏修, 王欣, 等. 矿山法施工隧道粉尘控制技术研究现状及进展[J]. 隧道建设:中英文, 2020, 40(增1): 68-74.
|
|
GUO Chun, SONG Junxiu, WANG Xin, et al. Research status and development of dust control technology in tunnel constructed by mining method[J]. Tunnel Construction, 2020, 40(S1):68-74.
|
| [5] |
崔铁军, 王凌霄. YOLOv4目标检测算法在煤矿工人口罩佩戴监测工作中的应用研究[J]. 中国安全生产科学技术, 2021, 17 (10): 66-71.
|
|
CUI Tiejun, WANG Lingxiao. Research on application of YOLOv4 object detection algorithm in monitoring on masks wearing of coal miners[J]. Journal of Safety Science and Technology, 2021, 17 (10): 66-71.
|
| [6] |
李华, 吴立舟, 钟兴润, 等. 基于计算机视觉的人员疲劳状态与不安全行为识别[J]. 中国安全科学学报, 2025, 35(3): 28-35.
doi: 10.16265/j.cnki.issn1003-3033.2025.03.0749
|
|
LI Hua, WU Lizhou, ZHONG Xingrun, et al. Recognition of personnel fatigue state and unsafe behavior based on computer vision[J]. China Safety Science Journal, 2025, 35(3): 28-35.
doi: 10.16265/j.cnki.issn1003-3033.2025.03.0749
|
| [7] |
赵树磊, 孙兵, 陈稳干, 等. 超高海拔隧道施工人员生理指标变化及劳动强度研究[J]. 中国安全科学学报, 2024, 34(4): 239-46.
doi: 10.16265/j.cnki.issn1003-3033.2024.04.1748
|
|
ZHAO Shulei, SUN Bing, CHEN Wen'gan, et al. Physiological indicators and labor intensity of tunnel construction workers at ultra-high altitude[J]. China Safety Science Journal, 2024, 34(4): 239-246.
doi: 10.16265/j.cnki.issn1003-3033.2024.04.1748
|
| [8] |
RAFIDISON M A, RAKOTOMIHAMINA A H, RAFANANTENANA S H J, et al. Neural networks contribution in face mask detection to reduce the spread of COVID-19[J]. Multimedia Tools and Applications, 2023, 82(21): 1-23.
doi: 10.1007/s11042-022-12047-3
|
| [9] |
ABOU CHAAYA J, ZARAKET B, HARB H, et al. Convolutional neural network-based architecture for detecting face mask in crowded areas[C]. Proceeding in 22nd IEEE Statistical Signal Processing Workshop (SSP), 2023: 408-412.
|
| [10] |
CRESPO F, CRESPO A, SIERRA-MARTíNEZ L M, et al. A computer vision model to identify the incorrect use of face masks for COVID-19 awareness[J]. Applied Sciences, 2022, 12(14): DOI: 10.3390/app12146924.
|
| [11] |
LOEY M, MANOGARAN G, TAHA M H N, et al. A hybrid deep transfer learning model with machine learning methods for face mask detection in the era of the COVID-19 pandemic[J]. Measurement, 2021, 167:DOI: 10.1016/j.measurement.2020.108288.
|
| [12] |
KUMAR B A, BANSAL M. Face mask detection on photo and real-time video images using Caffe-MobileNetV2 transfer learning[J]. Applied Sciences:Switzerland, 2023, 13(2):DOI: 10.3390/app13020935.
|
| [13] |
SHAO Yanhua, NING Jiajia, SHAO Huicao, et al. Lightweight face mask detection algorithm with attention mechanism[J]. Engineering Applications of Artificial Intelligence, 2024, 137:DOI: 10.1016/j.engappai.2024.109077.
|
| [14] |
高民, 陈高华, 古佳欣, 等. FLM-YOLOv8:一种轻量级的口罩佩戴检测算法[J]. 计算机工程与应用, 2024, 60(17): 203-215.
doi: 10.3778/j.issn.1002-8331.2402-0226
|
|
GAO Min, CHEN Gaohua, GU Jiaxin, et al. FLM-YOLOv8:lightweight mask wearing detection algorithm[J]. Computer Engineering and Applications, 2024, 60(17): 203-215.
doi: 10.3778/j.issn.1002-8331.2402-0226
|
| [15] |
NAGRATH P, JAIN R, MADAN A, et al. SSDMNV2:a real time DNN-based face mask detection system using single shot multibox detector and MobileNetV2[J]. Sustainable Cities and Society, 2021, 66:DOI: 10.1016/j.scs.2020.102692.
|
| [16] |
WEN Peng, YUAN Zhengyi, ZHANG Junhu, et al. MF-YOLO: mask wearing detection algorithm for dense environments[J]. IEEE Access, 2025, 13:DOI: 10.1109/ACCESS.2025.3551892.
|
| [17] |
SINGH D, SINGH B. Hybridization of feature selection and feature weighting for high dimensional data[J]. Applied Intelligence, 2019, 49(4): 1580-1596.
doi: 10.1007/s10489-018-1348-2
|
| [18] |
CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297.
doi: 10.1023/A:1022627411411
|
| [19] |
DALAI N, TRIGGS B. Histograms of oriented gradients for human detection[C]. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), 2005: 886-893.
|
| [20] |
LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
doi: 10.1023/B:VISI.0000029664.99615.94
|
| [21] |
REYNOLDS D A, QUATIERI T F, DUNN R B. Speaker verification using adapted gaussian mixture models[J]. Digital Signal Processing, 2000, 10(1/2/3): 19-41.
doi: 10.1006/dspr.1999.0361
|
| [22] |
PERRONNIN F, DANCE C. Fisher kernels on visual vocabularies for image categorization[C]. 2007 IEEE Conference on Computer Vision and Pattern Recognition, 2007: 1-8.
|