中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (8): 213-218.doi: 10.16265/j.cnki.issn1003-3033.2025.08.0125

• 公共安全 • 上一篇    下一篇

基于FDS的商业建筑火灾温度场预测

曹妍曦1(), 马鸿雁1,2,3,**(), 王顺1   

  1. 1 北京建筑大学 智能科学与技术学院, 北京 100044
    2 分布式储能安全大数据研究院, 北京 100044
    3 城市建筑超级智能技术北京市重点室, 北京 102616
  • 收稿日期:2025-04-08 修回日期:2025-06-15 出版日期:2025-08-28
  • 通信作者:
    **马鸿雁(1971—),女,陕西绥德人,博士,教授,主要从事电力电子与电力传动、储能技术、火灾应急疏散方面的研究。E-mail:
  • 作者简介:

    曹妍曦 (2000—),女,四川内江人,硕士研究生,研究方向为建筑火灾温度预测和火源定位。E-mail:

  • 基金资助:
    北京建筑大学博士基金资助(ZF15054); 北京建筑大学2022年度“双塔计划”(GJZJ20220802); 北京建筑大学2024年度研究生创新项目(PG2024095)

Fire temperature field prediction in commercial buildings based on FDS

CAO Yanxi1(), MA Hongyan1,2,3,**(), WANG Shun1   

  1. 1 School of Intelligence Science and Technology, Beijing University of Civil Engineering and Architecture, Beijing 10044, China
    2 Institute of Distributed Energy Storage Safety Big Data, Beijing 10044, China
    3 Beijing Key Laboratory of Super Intelligent Technology for Urban Architecture, Beijing 102616, China
  • Received:2025-04-08 Revised:2025-06-15 Published:2025-08-28

摘要: 为解决现代商业建筑火灾环境复杂、温度场预测难的问题,利用卷积神经网络(CNN)结合支持向量机(SVM)构建火灾温度场预测模型。先采用火灾动力学模拟(FDS)搭建商业建筑火灾模型,获得温度测点接收的序列数据,将温度、位置坐标和火灾持续时间作为输入参数建立数据集;再引入霜冰优化算法(RIME)对CNN-SVM中的隐藏层节点数、正则化系数和学习率进行寻优,建立预测模型,并讨论模型在不同的传感器损坏率下的抗干扰能力。结果表明:该模型在温度场平面预测上表现最优,平均绝对百分比误差为5.6%,最大相对温度误差不超过25%。在3种工况下抗干扰性能最佳,极端条件下最大误差不超过15%。

关键词: 商业建筑火灾, 温度场, 火灾动力学模拟(FDS), 卷积神经网络(CNN), 支持向量机(SVM)

Abstract:

To address the complexity of fire environment and the difficulty in predicting the temperature field in modern commercial buildings, a fire temperature field prediction model was constructed by combining CNN with SVM. Firstly, FDS was used to construct a commercial building fire model, and the sequence data received by the temperature measurement points were obtained. The temperature, position coordinates, and fire duration were used as input parameters to build the dataset. Secondly, the Rime Optimization Algorithm (RIME) was introduced to optimize the number of hidden layer nodes, regularization coefficient, and learning rate in the CNN-SVM, and then the prediction model was established. Finally, experiments were conducted based on the established dataset and prediction model, and the anti-interference ability of the model under different sensor failure rates was discussed. The results show that the model performs optimally in the prediction of the temperature field plane, with an average absolute percentage error of 5.6% and a maximum relative temperature error not exceeding 25%. The anti-interference performance is the best under three working conditions, and the maximum error does not exceed 15% under extreme conditions.

Key words: commercial building fires, temperature field, fire dynamics simulator(FDS), convolutional neural networks (CNN), support vector machine (SVM)

中图分类号: