[1] |
高振宇, 张慧宇, 高鹏. 2022年中国油气管道建设新进展[J]. 国际石油经济, 2023, 31(3):16-23.
|
|
GAO Zhenyu, ZHANG Huiyu, GAO Peng. New progress in China's oil and gas pipeline construction in 2022[J]. International Petroleum Economics, 2023, 31(3): 16-23.
|
[2] |
ZHOU Dengji, HUANG Dawen, HAO Jiarui, et al. Vibration-based fault diagnosis of the natural gas compressor using adaptive stochastic resonance realized by generative adversarial networks[J]. Engineering Failure Analysis, 2020, 116: DOI: 10.1016/j.engfailanal.2020.104759.
|
[3] |
李鑫, 卢灿铭, 左洪福, 等. 自回归和EWMA在齿轮箱早期异常检测中的应用[J]. 机械设计与制造, 2024(8): 63-66.
|
|
LI Xin, LU Canming, ZUO Hongfu, et al. Early fault diagnosis of gearbox based on autoregression and EWMA[J]. Machinery Design & Manufacture, 2024(8): 63-66.
|
[4] |
JIN Yongchao, WANG Renfang, ZHUANG Xiaodie, et al. Prediction of COVID-19 data using an ARIMA-LSTM hybrid forecast model[J]. Mathematics, 2022, 10(21): DOI: 10.3390/math10214001.
|
[5] |
SINGH S, MOHAPATRA A. Repeated wavelet transform based ARIMA model for very short-term wind speed forecasting[J]. Renewable Energy, 2019, 136: 758-768.
|
[6] |
古莹奎, 汪源金, 石昌武. 基于EWM和SVR的滚动轴承剩余使用寿命预测方法[J]. 中国安全科学学报, 2023, 33(9):49-55.
|
|
GU Yingkui, WANG Yuanjin, SHI Changwu. Remaining useful life prediction method of rolling bearing based on EWM and SVR[J]. China Safety Science Journal, 2023, 33(9): 49-55.
|
[7] |
吴小忠, 肖立华, 童超, 等. 基于传递熵与JS-BP神经网络的锂离子电池容量预测模型[J]. 中国电力, 2025, 58(2):186-192.
|
|
WU Xiaozhong, XIAO Lihua, TONG Chao, et al. Capacity prediction model of lithium-ion batteries based on transfer entropy and JS-BP neural network[J]. Electric Power, 2025, 58(2): 186-192.
|
[8] |
YAO Junming, LIANG Wei, XIONG Jingyi. Novel intelligent diagnosis method of oil and gas pipeline defects with transfer deep learning and feature fusion[J]. International Journal of Pressure Vessels and Piping, 2022, 200: DOI: 10.1016/j.ijpvp.2022.104781.
|
[9] |
林青, 姚俊名, 梁伟, 等. 基于深度学习的燃气发电机组剩余寿命预测[J]. 中国安全科学学报, 2023, 33(9):113-121.
|
|
LIN Qing, YAO Junming, LIANG Wei, et al. Residual life prediction of gas generator set based on deep learning[J]. China Safety Science Journal, 2023, 33(9): 113-121.
|
[10] |
黄迅迪, 庞雄文. 基于深度学习的智能设备故障诊断研究综述[J]. 计算机科学, 2023, 50(5):93-102.
|
|
HUANG Xundi, PANG Xiongwen. Review of intelligent device fault diagnosis based on deep learning[J]. Computer Science, 2023, 50(5): 93-102.
|
[11] |
周锐, 康英伟. 基于CNN-LSTM的燃气轮机燃烧室故障预警[J]. 热能动力工程, 2024, 39(1):191-197.
|
|
ZHOU Rui, KANG Yingwei. Fault warning of gas turbine combustor based on CNN-LSTM[J]. Journal of Engineering for Thermal Energy and Power, 2024, 39(1): 191-197.
|
[12] |
袁镇华, 茅大钧, 李玉珍. 基于注意力机制与XBOA-Bi-LSTM的离心式压缩机故障预警方法[J]. 机电工程, 2024, 41(3):400-408.
|
|
YUAN Zhenhua, MAO Dajun, LI Yuzhen. Centrifugal compressor fault warning method based on attention mechanism and XBOA-Bi-LSTM[J]. Journal of Mechanical & Electrical Engineering, 2024, 41(3): 400-408.
|
[13] |
杨婷婷, 李浩千, 陈晓峰, 等. 基于WPT-Transformer的磨煤机故障预警研究[J]. 热力发电, 2023, 52(12):180-189.
|
|
YANG Tingting, LI Haoqian, CHEN Xiaofeng, et al. Research on fault early warning of coal mill based on WPT and Transformer[J]. Thermal Power Generation, 2023, 52(12): 180-189.
|
[14] |
张友, 李聪波, 林利红, 等. 数据不完备下基于Informer的离心鼓风机故障趋势预测方法[J]. 计算机集成制造系统, 2023, 29(1):133-145.
|
|
ZHANG You, LI Congbo, LIN Lihong, et al. Centrifugal blower fault trend prediction method based on Informer with incomplete data[J]. Computer Integrated Manufacturing Systems, 2023, 29(1): 133-145.
|
[15] |
王振浩, 王翀, 成龙, 等. 基于集合经验模态分解和深度学习的光伏功率组合预测[J]. 高电压技术, 2022, 48(10):4133-4142.
|
|
WANG Zhenhao, WANG Chong, CHENG Long, et al. Photovoltaic power combined prediction based on ensemble empirical mode decomposition and deep learning[J]. High Voltage Engineering, 2022, 48(10): 4133-4142.
|
[16] |
DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2013, 62(3):531-544.
|
[17] |
代巍, 付华, 冀常鹏, 等. 回采工作面瓦斯涌出量VMD-DE-RVM区间预测方法[J]. 中国安全科学学报, 2018, 28(9):109-115.
|
|
DAI Wei, FU Hua, JI Changpeng, et al. Interval prediction method for gas emission from coal mining face based on VMD-DE-RVM[J]. China Safety Science Journal, 2018, 28(9): 109-115.
|
[18] |
ZHANG Pengfei, GAO Dong, LU Yong, et al. Online chatter detection in milling process based on fast iterative VMD and energy ratio difference[J]. Measurement, 2022, 194: DOI: 10.1016/j.measurement.2022.111060.
|
[19] |
江星星, 宋秋昱, 杜贵府, 等. 变分模式分解方法研究与应用综述[J]. 仪器仪表学报, 2023, 44(1):55-73.
|
|
JIANG Xingxing, SONG Qiuyu, DU Guifu, et al. Review on research and application of variational mode decomposition[J]. Chinese Journal of Scientific Instrument, 2023, 44(1): 55-73.
|
[20] |
刘丽桑, 郭凯琪, 徐哲壮, 等. 基于数据挖掘的双模式组合光伏功率日前预测[J]. 武汉大学学报:工学版, 2024, 57(10):1459-1468.
|
|
LIU Lisang, GUO Kaiqi, XU Zhezhuang, et al. Day-ahead prediction of dual-mode combined photovoltaic power based on data mining[J]. Engineering Journal of Wuhan University, 2024, 57(10): 1459-1468.
|
[21] |
ZHOU Haoyi, ZHANG Shanghang, PENG Jieqi, et al. Informer: beyond efficient transformer for long sequence time-series forecasting[C]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021: 11 106-11 115.
|