China Safety Science Journal ›› 2022, Vol. 32 ›› Issue (11): 192-199.doi: 10.16265/j.cnki.issn1003-3033.2022.11.0077
• Technology and engineering of disaster prevention and mitigation • Previous Articles Next Articles
LYU Wei1(), ZHOU Wennan1, CHEN Wentao1,**(
), HAN Yefan1, FANG Zhiming2
Received:
2022-05-12
Revised:
2022-09-09
Online:
2022-11-28
Published:
2023-05-28
Contact:
CHEN Wentao
LYU Wei, ZHOU Wennan, CHEN Wentao, HAN Yefan, FANG Zhiming. Research on BN of network public opinion crisis risk caused by short videos of rainstorm disaster[J]. China Safety Science Journal, 2022, 32(11): 192-199.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cssjj.com.cn/EN/10.16265/j.cnki.issn1003-3033.2022.11.0077
Tab.1
Prediction index system of short-form online video opinion events of sudden incidents
目标 变量 | 一级 指标 | 二级指标 | 描述 | 取值 |
---|---|---|---|---|
网络舆 情危机 风险S0 | 灾情程度S1 | 水位S11 | 膝盖以下、膝盖以上臀部以下、臀部以上 | 低、中、高 |
受灾人数S12 | (0,5)、[5,20]、(20,+∞) | 低、中、高 | ||
应对行为S2 | 被困者积极自救S21 | 隶属、不隶属 | 是、否 | |
参与营救他人S22 | 隶属、不隶属 | 是、否 | ||
捐赠物资S23 | 隶属、不隶属 | 是、否 | ||
感恩救援人员S24 | 隶属、不隶属 | 是、否 | ||
发布救援信息S25 | 隶属、不隶属 | 是、否 | ||
服从转移安置S26 | 隶属、不隶属 | 是、否 | ||
非理性行为S27 | 隶属、不隶属 | 是、否 | ||
视频属性S3 | 互助救助类S31 | 隶属、不隶属 | 是、否 | |
寻求帮助类S32 | 隶属、不隶属 | 是、否 | ||
受灾现场类S33 | 隶属、不隶属 | 是、否 | ||
非理性行为类S34 | 隶属、不隶属 | 是、否 | ||
舆情情感 倾向S4 | 微博原文情感倾向S41 | 情感值大于0、情感值小于等于0 | 积极、消极 | |
微博评论情感倾向S42 | 积极情感占比大于50%、 积极情感占比小于等于50% | 积极、消极 | ||
舆情传播扩 散度S5 | 信息发布主体S51 | 官方媒体、自媒体 | 官媒、自媒体 | |
微博评论总数S52 | (0,300]、(300,700]、(700,1000] | 低、中、高 | ||
微博转发总数S53 | (0,300]、(300,700]、(700,1000] | 低、中、高 | ||
微博点赞总数S54 | (0,300]、(300,700]、(700,1000] | 低、中、高 |
Tab.3
Prediction and actual results
序号 | 预测值 | 预测 结果 | 实际 结果 | ||||
---|---|---|---|---|---|---|---|
低 | 中 | 高 | |||||
1 | 90.4 | 9.6 | 0.0 | 低 | 低 | ||
2 | 75.8 | 21.3 | 2.9 | 中 | 低 | ||
3 | 1.0 | 0.0 | 0.0 | 低 | 低 | ||
4 | 1.0 | 0.0 | 0.0 | 低 | 低 | ||
5 | 1.0 | 0.0 | 0.0 | 低 | 低 | ||
6 | 1.0 | 0.0 | 0.0 | 低 | 低 | ||
序号 | 预测值 | 预测 结果 | 实际 结果 | ||||
低 | 中 | 高 | |||||
7 | 1.0 | 0.0 | 0.0 | 低 | 低 | ||
8 | 1.0 | 0.0 | 0.0 | 低 | 低 | ||
9 | 1.0 | 0.0 | 0.0 | 低 | 低 | ||
10 | 1.0 | 0.0 | 0.0 | 低 | 低 | ||
11 | 66.7 | 33.3 | 0.0 | 低 | 低 | ||
12 | 1.8 | 96.6 | 1.6 | 中 | 高 | ||
13 | 65.5 | 26.2 | 8.3 | 低 | 低 | ||
14 | 1.0 | 0.0 | 0.0 | 低 | 低 | ||
15 | 93.3 | 3.0 | 3.7 | 低 | 低 | ||
16 | 1.0 | 0.0 | 0.0 | 低 | 中 | ||
17 | 93.3 | 3.0 | 3.7 | 低 | 低 | ||
18 | 1.0 | 0.0 | 0.0 | 低 | 低 | ||
19 | 1.0 | 0.0 | 0.0 | 低 | 低 | ||
20 | 0.0 | 0.0 | 1.0 | 高 | 中 | ||
21 | 1.0 | 0.0 | 0.0 | 低 | 低 | ||
22 | 93.3 | 3.0 | 3.7 | 低 | 低 | ||
23 | 1.0 | 0.0 | 0.0 | 低 | 低 | ||
24 | 38.7 | 32.8 | 28.5 | 低 | 低 |
Tab.4
Sensitivity analysis results of nodes S0, S4 and S5
节点 | 排名前5 的节点 | 相关度 指标 | 占比 | 相关度指标 变异系数 |
---|---|---|---|---|
S0 | S2 | 0.187 85 | 15.3 | 0.048 490 9 |
S5 | 0.085 05 | 6.95 | 0.023 714 9 | |
S42 | 0.044 08 | 3.6 | 0.003 486 3 | |
S1 | 0.041 63 | 3.4 | 0.005 809 1 | |
S41 | 0.030 14 | 2.46 | 0.002 423 1 | |
S4 | S2 | 0.347 34 | 35.5 | 0.109 097 7 |
S1 | 0.015 74 | 1.61 | 0.005 196 1 | |
S42 | 0.015 33 | 1.57 | 0.005 237 8 | |
S41 | 0.011 13 | 1.14 | 0.003 805 0 | |
S25 | 0.007 67 | 0.783 | 0.002 513 3 | |
S5 | S0 | 0.085 05 | 5.38 | 0.012 373 7 |
S52 | 0.031 15 | 1.97 | 0.004 661 0 | |
S2 | 0.014 39 | 0.911 | 0.002 248 7 | |
S53 | 0.014 27 | 0.904 | 0.001 956 7 | |
S54 | 0.007 32 | 0.463 | 0.001 084 9 |
Tab.5
Trends in probability changes when evidence variables is public opinion event%
节点 | 状态 | 后验推理1 | 后验推理2 | ||||
---|---|---|---|---|---|---|---|
预测模型 S0=低 (p=56.1) | 后验概率1 S0=高 (p=100) | 变动 趋势 | 后验概率1 S0=高 (p=100) | 后验概率2 S0=高、S1=高、S2=消极 (p=100) | 变动 趋势 | ||
S1 | 低 | 22.3 | 30.7 | 37.67 | 30.7 | — | — |
中 | 29.0 | 52.2 | 80.00 | 52.2 | — | — | |
高 | 48.6 | 17.0 | -65.02 | 17.0 | — | — | |
S2 | 消极 | 37.3 | 21.0 | -43.70 | 21.0 | — | — |
中立 | 29.5 | 29.8 | 1.02 | 29.8 | — | — | |
积极 | 33.1 | 49.3 | 48.94 | 49.3 | — | — | |
S3 | 消极 | 26.7 | 35.1 | 31.46 | 35.1 | 38.3 | 9.12 |
中立 | 35.5 | 31.8 | -10.42 | 31.8 | 30.9 | -2.83 | |
积极 | 37.7 | 33.1 | -12.20 | 33.1 | 30.8 | -6.95 | |
S4 | 消极 | 58.6 | 38.7 | -33.96 | 38.7 | 100 | 158.40 |
积极 | 41.4 | 61.3 | 48.07 | 61.3 | 0 | -100 | |
S5 | 低 | 36.2 | 36.2 | 0.00 | 36.2 | 0 | -100 |
中 | 29.5 | 23.4 | -20.68 | 23.4 | 18.9 | -23.81 | |
高 | 34.3 | 40.4 | 17.78 | 40.4 | 81.1 | 100.74 |
[1] |
毕翔, 唐存琛, 肖俏. 短视频社交媒介舆情监测与危机防范机制研究[J]. 情报理论与实践, 2019, 42(10):102-108.
|
|
|
[2] |
刘继, 武梦娇. 基于贝叶斯网络的网络舆情态势评估分析:以“新冠肺炎疫情”事件为例[J]. 情报杂志, 2021, 40(3): 187-192,103.
|
|
|
[3] |
doi: 10.3390/ijgi8080359 |
[4] |
周义棋, 田向亮, 钟茂华. 基于微博网络爬虫的巴黎圣母院大火舆情分析[J]. 武汉理工大学学报:信息与管理工程版, 2019, 41(5):461-466.
|
|
|
[5] |
陈璐. 论短视频新闻在突发事件中的舆论导向作用:以“重庆万州公交车坠江”事件为例[J]. 西部广播电视, 2019(2): 26-27.
|
[6] |
王微, 王晰巍, 娄正卿, 等. 信息生态视角下移动短视频UGC网络舆情传播行为影响因素研究[J]. 情报理论与实践, 2020, 43(3):24-30.
|
|
|
[7] |
王英杰, 胡漠, 张津赫, 等. 信息疫情下短视频网络舆情预警指标体系构建研究[J]. 情报科学, 2021, 39(11):38-44.
|
|
|
[8] |
doi: 10.1007/s00371-018-1568-9 |
[9] |
doi: 10.1007/s10111-018-0473-3 |
[10] |
李琰, 毛钰, 张燕. 建筑工人应急行为影响机制[J]. 中国安全科学学报, 2021, 31(10):1-7.
doi: 10.16265/j.cnki.issn1003-3033.2021.10.001 |
|
|
[11] |
杨静, 朱莉萨, 朱镇远, 等. 基于贝叶斯网络的网络舆情案例匹配模型[J]. 现代情报, 2019, 39(10):94-101.
doi: 10.3969/j.issn.1008-0821.2019.10.011 |
|
|
[12] |
周昕, 邱长波, 李瑞. 基于贝叶斯网络的网络舆情危机节点诊断研究[J]. 现代情报, 2018, 38(11):59-65.
doi: 10.3969/j.issn.1008-0821.2018.11.011 |
|
|
[13] |
付业勤. 旅游危机事件网络舆情研究:构成、机理与管控[D]. 泉州: 华侨大学, 2014.
|
|
|
[14] |
闵晨, 王国华, 陈强. 视频在热点事件议程设置与舆论引导中的作用研究[J]. 情报杂志, 2018, 37(7):80-87.
|
|
|
[15] |
|
[1] | FU Shanshan, ZHANG Yue, XI Yongtao, WENG Jinxian. Causal chain of maritime accidents in Yangtze River Estuary considering coupling effects of multi-risk factors [J]. China Safety Science Journal, 2023, 33(3): 60-67. |
[2] | JIN Huibin, ZHU Mengchang, MA Mingxia. Cause analysis of commuter flight accidents/incidents based on ACE-BN [J]. China Safety Science Journal, 2023, 33(2): 96-102. |
[3] | LIU Jiahao, YU Yang, ZHANG Zhenxing, YU Jianxing, WANG Weiwei, FU Yiqin. Risk assessment method of risers based on two-dimensional cloud model and BN [J]. China Safety Science Journal, 2022, 32(5): 147-154. |
[4] | LU Yi, WU Jiangle, SHAO Shuzhen, SHI Shiliang, ZHOU Rongyi, WANG Wei. Prediction model for road transport accidents of hazardous chemicals based on Bayesian network [J]. China Safety Science Journal, 2022, 32(3): 174-182. |
[5] | WANG Junwu, WANG Mengyu, LIU Denghui, WU Han, HU Die. Evaluation of falling possibility at height in subway station construction based on HFACS-BN [J]. China Safety Science Journal, 2021, 31(6): 90-98. |
[6] | PAN Dan, LI Yongzhou, LUO Fan, ZHANG Panke, XIAO Qin. FTA-BN model of risks causation for FOD intrusion in flight area [J]. China Safety Science Journal, 2021, 31(6): 7-13. |
[7] | LIU Yang, ZHANG Jianjing, LUO Hongsen, YU Haiying, XIANG Bo. Fuzzy-SVM prediction model of subgrade seismic damage based on Bayesian network [J]. China Safety Science Journal, 2021, 31(11): 171-178. |
[8] | QU Jing, ZHANG Jianbin, LI Xufang, LU Bao, HUA Ning, ZHU Xiaoman. Deduction of leakage accident scenarios of oil pipelines based on Bayesian network [J]. China Safety Science Journal, 2021, 31(1): 192-198. |
[9] | ZHU Jingyu, CHEN Guoming, LYU Han, MENG Xiangkun, ZHI Chenxiao, ZHOU Lichen. Research on risk control decision method for deepwater drilling blowout [J]. China Safety Science Journal, 2020, 30(2): 113-118. |
[10] | SI Dongsen, ZHANG Yingjun, LANG Kun. Causation analysis of container ship collision accidents based on improved BN [J]. China Safety Science Journal, 2019, 29(10): 31-37. |
[11] | WANG Jiening, YU Rui. Research on human error ontology modeling and BN diagnosisfor handover in ATM system [J]. China Safety Science Journal, 2018, 28(6): 67-72. |
[12] | MENG Xiangkun, CHEN Guoming, ZHU Gaogeng, ZHU Yuan, ZHENG Chunliang. DEMATEL-BN based dynamic analysis of vulnerability of offshore platforms to leakage [J]. China Safety Science Journal, 2018, 28(5): 111-116. |
[13] | CHEN Kejia, MAO Zhe, WU Bing, FAN Shen. Mutual information based prediction of level of collision incident in Yangtze river [J]. China Safety Science Journal, 2018, 28(11): 168-175. |
[14] | YANG Yongsheng, ZHONG Shaobo, YU Zhichen, LI Yaoxuan, HUANG Quanyi. A model for dynamic risk calculation of urban gas pipeline [J]. China Safety Science Journal, 2018, 28(1): 167-172. |
[15] | JIN Chun, LIU Yutong. Method of designing operation process for seaport with consideration of operators' behavioral safety [J]. China Safety Science Journal, 2017, 27(7): 36-41. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||