China Safety Science Journal ›› 2024, Vol. 34 ›› Issue (7): 44-52.doi: 10.16265/j.cnki.issn1003-3033.2024.07.0237
• Safety engineering technology • Previous Articles Next Articles
CHEN Wei1(), ZHAO Zhuoya1,**(
), NIU Li2, WEN Daoyun3, LUO Hao3
Received:
2024-01-15
Revised:
2024-04-21
Online:
2024-07-28
Published:
2025-01-28
Contact:
ZHAO Zhuoya
CLC Number:
CHEN Wei, ZHAO Zhuoya, NIU Li, WEN Daoyun, LUO Hao. IFRAM-BN model for causes of accidents in attached lifting scaffolding under heavy rainfall scenarios[J]. China Safety Science Journal, 2024, 34(7): 44-52.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cssjj.com.cn/EN/10.16265/j.cnki.issn1003-3033.2024.07.0237
Table 4
Quantitative event safety status classification
指标 | 风险等级(等级越高,安全状态越低) | ||||||
---|---|---|---|---|---|---|---|
Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ | |||
环境A1 | 强降雨B1 | 降雨强度X1/(mm·d) | [0,25) | [25,50) | [50,100) | [100,250) | ≥250 |
短时降雨量X2/(mm·h) | [0,2) | [2,4) | [4,8) | [8,20) | ≥20 | ||
降雨历时X3/d | [0,1) | [1,2) | [2,5) | [5,10) | ≥10 | ||
伴随天气B2 | 风力强度X4/(m·s-1) | [0,1.5] | [1.6,3.3] | [3.4,5.4] | [5.5,7.9] | ≥8 | |
大雾(能见度)X5/m | [103,104] | [500,103] | [200,500] | [50,200] | [0,50] | ||
雷电X6(综合强度) | [0,0.2) | [0.2,0.4) | [0.4,0.6) | [0.6,0.8) | ≥0.8 | ||
技术A2 | 高度差B3 | 相邻机位升降高度差X7/mm | [0,7.5) | [7.5,15) | [15,22.5) | [22.5,30) | ≥30 |
整体升降高度差X8/mm | [0,20) | [20,40) | [40,60) | [60,80) | ≥80 | ||
使用状态B4 | 升降载荷X9(实际/设计) | [0,1] | [1,1.075) | [1.075,1.15) | [1.15,1.3) | ≥1.3 | |
架体垂直度X10/‰ | [0,1) | [1,2) | [2,3) | [3,4) | ≥4 | ||
水平支承桁架挠度X11 (L为受弯构件跨度) | [0, L/1000) | [L/1000, L/750) | [L/750, L/500) | [L/500, L/250) | ≥L/250 | ||
人员A3 | 作业人员B5 | 持证上岗人数占比X12/% | [90,100] | [80,90) | [70,80) | [60,70) | [0,60) |
防护配备与使用率X13/% | [80,100] | [60,80) | [40,60) | [20,40) | [0,20) |
Table 5
Quantitative event safety status classification
指标 | 风险等级(等级越高,安全状态越低) | |||||
---|---|---|---|---|---|---|
Ⅰ | Ⅱ | Ⅲ | Ⅳ | |||
[0,2.5) | [2.5,5) | [5,7.5) | [7.5,10] | |||
技术A2 | 保护装置B6 | 安全防护系统X14 | 完善 | 较完善 | 一般 | 不完善 |
防倾防坠装置X15 | 良好 | 较好 | 一般 | 失效 | ||
同步控制系统X16 | 符合 | 较符合 | 一般 | 不符合 | ||
架体稳定 性B7 | 架体构件不合格或失效X17 | 无 | 较少 | 一般 | 较多 | |
附着支座混凝土强度X18 | ≫C15 | >C15 | ≈C15 | <C15 | ||
电动葫芦悬挂状态X19 | 符合 | 较符合 | 一般 | 不符合 | ||
人员A3 | B4 | 工人违规操作X20 | 无 | 较少 | 一般 | 严重 |
监管人员B8 | 不安全行为未纠正制止X21 | 无 | 较少 | 一般 | 普遍存在 | |
管理者违章指挥X22 | 无 | 较少 | 一般 | 较多 | ||
组织A4 | 技术管理B9 | 专项施工方案X23 | 完善 | 较完善 | 一般 | 不完善 |
安全技术交底X24 | 全面 | 较全面 | 模糊 | 极模糊 | ||
安全教育培训X25 | 全覆盖 | 大部分覆盖 | 覆盖一半 | 覆盖极少 | ||
定期维护保养X26 | 好 | 较好 | 一般 | 较差 | ||
监督管理B10 | 旁站等强制性监督X27 | 好 | 较好 | 一般 | 较差 | |
检查验收及现场管理X28 | 强 | 较强 | 一般 | 较弱 | ||
应急管理 | 应急预案X29 | 完善 | 较完善 | 较差 | 无 | |
及时救援X30 | 非常及时 | 较及时 | 一般 | 不及时 |
Table 6
Root node prior probability
节点 | 安全状态 | 隶属度 | 先验概率 | 节点 | 安全状态 | 隶属度 | 先验概率 | 节点 | 安全状态 | 隶属度 | 先验概率 |
---|---|---|---|---|---|---|---|---|---|---|---|
X1 | Ⅲ | 0.853 5 | 0.715 1 | X11 | Ⅰ | 0.786 5 | 0.769 6 | X21 | Ⅱ | 0.835 7 | 0.811 3 |
Ⅳ | 0.369 5 | 0.284 9 | Ⅱ | 0.235 4 | 0.230 4 | Ⅲ | 0.193 7 | 0.188 0 | |||
X2 | Ⅲ | 0.854 5 | 0.706 5 | X12 | Ⅱ | 0.786 4 | 0.753 8 | Ⅰ | 0.000 8 | 0.000 7 | |
Ⅳ | 0.355 0 | 0.293 5 | Ⅰ | 0.256 6 | 0.245 9 | X22 | Ⅲ | 0.559 3 | 0.558 7 | ||
X3 | Ⅴ | 0.571 8 | 0.711 2 | Ⅲ | 0.000 3 | 0.000 3 | Ⅱ | 0.441 8 | 0.441 3 | ||
Ⅳ | 0.277 1 | 0.288 8 | X13 | Ⅰ | 0.642 4 | 0.641 9 | X23 | Ⅰ | 0.733 1 | 0.722 3 | |
X4 | Ⅲ | 0.848 2 | 0.826 4 | Ⅱ | 0.358 4 | 0.358 1 | Ⅱ | 0.281 8 | 0.277 7 | ||
Ⅳ | 0.178 1 | 0.173 6 | X14 | Ⅱ | 0.778 9 | 0.758 5 | X24 | Ⅰ | 0.618 4 | 0.616 0 | |
X5 | Ⅱ | 0.972 6 | 0.688 3 | Ⅲ | 0.247 8 | 0.241 3 | Ⅱ | 0.385 6 | 0.384 0 | ||
Ⅰ | 0.440 2 | 0.311 5 | Ⅰ | 0.000 2 | 0.000 2 | X25 | Ⅱ | 0.880 2 | 0.854 3 | ||
Ⅲ | 0.000 3 | 0.000 2 | X15 | Ⅱ | 0.676 8 | 0.670 8 | Ⅲ | 0.148 6 | 0.144 3 | ||
X6 | Ⅰ | 0.787 0 | 0.769 1 | Ⅲ | 0.332 2 | 0.329 2 | Ⅰ | 0.001 4 | 0.001 4 | ||
Ⅱ | 0.236 3 | 0.230 9 | X16 | Ⅰ | 0.836 6 | 0.813 3 | X26 | Ⅲ | 0.879 9 | 0.838 7 | |
X7 | Ⅱ | 0.769 1 | 0.754 1 | Ⅱ | 0.192 1 | 0.186 7 | Ⅱ | 0.156 4 | 0.149 1 | ||
Ⅰ | 0.000 2 | 0.000 2 | X17 | Ⅳ | 0.676 8 | 0.670 9 | Ⅳ | 0.012 9 | 0.012 3 | ||
Ⅲ | 0.250 6 | 0.245 7 | Ⅲ | 0.332 0 | 0.329 1 | X27 | Ⅳ | 0.676 8 | 0.671 0 | ||
X8 | Ⅱ | 0.644 7 | 0.733 8 | X18 | Ⅱ | 0.974 3 | 0.910 0 | Ⅲ | 0.331 9 | 0.329 0 | |
Ⅰ | 0.233 6 | 0.265 9 | Ⅰ | 0.014 0 | 0.013 1 | X28 | Ⅳ | 0.559 2 | 0.558 6 | ||
Ⅲ | 0.000 3 | 0.000 3 | Ⅲ | 0.082 4 | 0.076 9 | Ⅲ | 0.441 8 | 0.441 4 | |||
X9 | Ⅴ | 0.715 3 | 0.777 0 | X19 | Ⅳ | 0.786 4 | 0.769 5 | X29 | Ⅲ | 0.727 6 | 0.707 6 |
Ⅳ | 0.205 3 | 0.223 0 | Ⅲ | 0.235 5 | 0.230 5 | Ⅳ | 0.300 6 | 0.292 4 | |||
X10 | Ⅱ | 0.647 9 | 0.643 9 | X20 | Ⅳ | 0.973 1 | 0.930 4 | X30 | Ⅲ | 0.705 4 | 0.668 7 |
Ⅲ | 0.358 8 | 0.356 4 | Ⅲ | 0.072 8 | 0.069 6 | Ⅳ | 0.318 8 | 0.311 3 |
[1] |
陈伟, 乔治, 王伟震, 等. 暴雨灾害引发施工安全事故应急处置SD模型[J]. 中国安全科学学报, 2017, 27(6):169-174.
doi: 10.16265/j.cnki.issn1003-3033.2017.06.029 |
doi: 10.16265/j.cnki.issn1003-3033.2017.06.029 |
|
[2] |
裴兴旺, 赵向东, 周崇刚, 等. 基于灰色欧几里得的全钢型附着升降脚手架安全性评价[J]. 安全与环境学报, 2020, 20(2):405-415.
|
|
|
[3] |
冯壮, 蔡东升. 基于T-S模糊故障树和BN的附着式升降脚手架倾覆和坠落事故易发性评价[J]. 数学的实践与认识, 2023, 53(2):143-151.
|
|
|
[4] |
韦东. 基于ANSYS的附着式升降脚手架的力学分析研究及实验验证[D]. 西安: 西安建筑科技大学, 2021.
|
|
|
[5] |
|
[6] |
|
[7] |
|
[8] |
王涵宇, 谭钦文. 基于FRAM的有限空间作业安全职责半定量分析[J]. 中国安全科学学报, 2023, 33(5):88-95.
doi: 10.16265/j.cnki.issn1003-3033.2023.05.1382 |
doi: 10.16265/j.cnki.issn1003-3033.2023.05.1382 |
|
[9] |
|
[10] |
张人友, 崔焕焕, 张进超, 等. 基于FRAM-蒙特卡洛模拟的危化类实验安全分析和屏障管理[J]. 实验技术与管理, 2023(10):223-228.
|
|
|
[11] |
尹德志, 帅斌, 黄文成, 等. Tropos-FRAM法在道路客运事故分析中的应用[J]. 中国安全科学学报, 2020, 30(8):151-157.
doi: 10.16265/j.cnki.issn1003-3033.2020.08.022 |
doi: 10.16265/j.cnki.issn1003-3033.2020.08.022 |
|
[12] |
郭进平, 马卓远, 孙寅峰, 等. 基于FRAM的煤矿生产系统应用[J]. 中国安全科学学报, 2023, 33(6):73-79.
doi: 10.16265/j.cnki.issn1003-3033.2023.06.1373 |
doi: 10.16265/j.cnki.issn1003-3033.2023.06.1373 |
|
[13] |
|
[14] |
疏学明, 颜峻, 胡俊, 等. 基于Bayes网络的建筑火灾风险评估模型[J]. 清华大学学报:自然科学版, 2020, 60(4):321-327.
|
|
|
[15] |
李岳, 周则圆, 蔡靖. 基于联系云的飞机轮胎滑水风险可拓评价模型[J/OL]. 北京航空航天大学学报:1-9[2024-03-29]. https://doi.org/10.13700/j.bh.1001-5965.2023.0136.
|
|
|
[16] |
陈钊, 袁航, 黄鹏宇, 等. 基于改进条件概率的贝叶斯网络隧道坍塌安全风险评价[J]. 中南大学学报:自然科学版, 2023, 54(1):327-340.
|
|
|
[17] |
刘剑锋. 基于物联网的附着式升降脚手架安全监控管理系统研究[D]. 武汉: 华中科技大学, 2017.
|
|
|
[18] |
BOŻENA H, TOMASZ N, ZUZANNA W, et al. Qualitative and quantitative analysis of the causes of occupational accidents related to the use of construction scaffoldings[J]. Applied Sciences,2022,12(11):DOI:10.3390/APP12115514.
|
[19] |
陕西省应急管理厅. 陕西省安全生产委员会办公室关于西安“9·10”重大建筑施工坍塌事故调查处理情况的通报[EB/OL].(2012-03-07). http://yjt.shaanxi.gov.cn/c/2012-03-07/559897.shtml.
|
[1] | JIANG Zijian, ZHOU Rongyi, SHI Yunxiao, LIU Can, YANG Bifan, ZHENG Shiqiu. Correlation and traceability analysis of hazardous chemical explosion accidents based on Bayesian network [J]. China Safety Science Journal, 2024, 34(6): 173-180. |
[2] | WANG Yanqing, WU Siyu, YANG Keyue. Study on air traffic controllers' situational awareness reliability in emergency scenarios [J]. China Safety Science Journal, 2024, 34(6): 207-215. |
[3] | CHEN Wei, TIAN Yishuai, ZENG Weihua, GUO Daoyuan, ZHAO Zhuoya. HC-GC human factors analysis model for construction engineering safety accidents caused by heavy rainfall [J]. China Safety Science Journal, 2023, 33(8): 15-23. |
[4] | CHEN Wei, TIAN Yishuai, ZHAO Zhuoya, WANG Yanhua, GUO Daoyuan. Safety risk evolution reasoning research of subway station construction under heavy rainfall [J]. China Safety Science Journal, 2023, 33(6): 135-143. |
[5] | FU Shanshan, ZHANG Yue, XI Yongtao, WENG Jinxian. Causal chain of maritime accidents in Yangtze River Estuary considering coupling effects of multi-risk factors [J]. China Safety Science Journal, 2023, 33(3): 60-67. |
[6] | JIN Huibin, ZHU Mengchang, MA Mingxia. Cause analysis of commuter flight accidents/incidents based on ACE-BN [J]. China Safety Science Journal, 2023, 33(2): 96-102. |
[7] | LIU Jiahao, YU Yang, ZHANG Zhenxing, YU Jianxing, WANG Weiwei, FU Yiqin. Risk assessment method of risers based on two-dimensional cloud model and BN [J]. China Safety Science Journal, 2022, 32(5): 147-154. |
[8] | LU Yi, WU Jiangle, SHAO Shuzhen, SHI Shiliang, ZHOU Rongyi, WANG Wei. Prediction model for road transport accidents of hazardous chemicals based on Bayesian network [J]. China Safety Science Journal, 2022, 32(3): 174-182. |
[9] | LYU Wei, ZHOU Wennan, CHEN Wentao, HAN Yefan, FANG Zhiming. Research on BN of network public opinion crisis risk caused by short videos of rainstorm disaster [J]. China Safety Science Journal, 2022, 32(11): 192-199. |
[10] | WANG Junwu, WANG Mengyu, LIU Denghui, WU Han, HU Die. Evaluation of falling possibility at height in subway station construction based on HFACS-BN [J]. China Safety Science Journal, 2021, 31(6): 90-98. |
[11] | PAN Dan, LI Yongzhou, LUO Fan, ZHANG Panke, XIAO Qin. FTA-BN model of risks causation for FOD intrusion in flight area [J]. China Safety Science Journal, 2021, 31(6): 7-13. |
[12] | LIU Yang, ZHANG Jianjing, LUO Hongsen, YU Haiying, XIANG Bo. Fuzzy-SVM prediction model of subgrade seismic damage based on Bayesian network [J]. China Safety Science Journal, 2021, 31(11): 171-178. |
[13] | QU Jing, ZHANG Jianbin, LI Xufang, LU Bao, HUA Ning, ZHU Xiaoman. Deduction of leakage accident scenarios of oil pipelines based on Bayesian network [J]. China Safety Science Journal, 2021, 31(1): 192-198. |
[14] | ZHU Jingyu, CHEN Guoming, LYU Han, MENG Xiangkun, ZHI Chenxiao, ZHOU Lichen. Research on risk control decision method for deepwater drilling blowout [J]. China Safety Science Journal, 2020, 30(2): 113-118. |
[15] | SI Dongsen, ZHANG Yingjun, LANG Kun. Causation analysis of container ship collision accidents based on improved BN [J]. China Safety Science Journal, 2019, 29(10): 31-37. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||