China Safety Science Journal ›› 2022, Vol. 32 ›› Issue (6): 31-37.doi: 10.16265/j.cnki.issn1003-3033.2022.06.2406
• Safety social science and safety management • Previous Articles Next Articles
LIU Kun(), JIAO Yubo, ZHANG Xiaoming, CHEN Xiaoyu, JIANG Chaozhe**(
)
Received:
2022-01-10
Revised:
2022-04-10
Online:
2022-06-28
Published:
2022-12-28
Contact:
JIANG Chaozhe
LIU Kun, JIAO Yubo, ZHANG Xiaoming, CHEN Xiaoyu, JIANG Chaozhe. Test of railway train drivers' stress by using ECG signal[J]. China Safety Science Journal, 2022, 32(6): 31-37.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cssjj.com.cn/EN/10.16265/j.cnki.issn1003-3033.2022.06.2406
Tab.1
Results of Mann-Whitney U test
HRV指标 | 原假设 | P值 |
---|---|---|
SDNN | X{stress = 0} = X{stress = 1} | 0.831 |
RMSSD | X{stress = 0} = X{stress = 1} | 0.067 |
NN50 | X{stress = 0} = X{stress = 1} | 0.048 |
PNN50 | X{stress = 0} = X{stress = 1} | 0.044 |
VLF | X{stress = 0} = X{stress = 1} | 0.231 |
LF | X{stress = 0} = X{stress = 1} | 0.230 |
HF | X{stress = 0} = X{stress = 1} | 0.062 |
LF/HF | X{stress = 0} = X{stress = 1} | 0.005 |
SD1 | X{stress = 0} = X{stress = 1} | 0.060 |
SD2 | X{stress = 0} = X{stress = 1} | 0.978 |
CSI | X{stress = 0} = X{stress = 1} | 0.048 |
CVI | X{stress = 0} = X{stress = 1} | 0.165 |
Tab.3
Average accuracy of different classifiers using 10-folds cross-validation
分类器算法 | HRV全部特征 | 特征选择 | 标准化的HRV全部特征 | 标准化的特征选择 |
---|---|---|---|---|
KNN(K=1) | 46.5±1.2(43.2~50.7) | 57.8±1.1(52.3~60.1) | 51.4±1.6(48.8~54.0) | 54.9±2.0(50.0~58.3) |
KNN(K=3) | 48.1±1.9(46.7~53.3) | 63.6±2.0(59.1~67.4) | 52.1±3.8(49.8~63.5) | 66.4±3.9(59.4~72.1) |
KNN(K=5) | 49.8±1.5(48.1~52.9) | 62.5±1.8(55.1~63.2) | 53.3±2.3(50.8~61.1) | 59.3±1.5(57.5~61.8) |
RF | 65.9±2.6(60.3~71.3) | 68.8±2.4(65.3~73.9) | 64.8±1.5(61.3~66.7) | 70.4±2.0(66.3~72.1) |
SVM(LKF) | 58.1±2.2(55.4~62.4) | 63.3±3.0(60.4~72.8) | 61.1±3.3(56.4~69.3) | 65.8±2.4(61.3~70.5) |
SVM(RBF) | 63.1±1.2(60.7~66.3) | 68.9±1.9(66.5~74.4) | 65.2±2.4(62.5~71.8) | 71.2±4.0(64.1~78.5) |
[1] |
|
[2] |
doi: 10.1016/j.biopsycho.2015.03.017 |
[3] |
张琼, 付锐, 秦加合, 等. 基于知信行理论的驾驶人风险行为研究[J]. 中国安全科学学报, 2012, 22(4): 8-13.
|
|
|
[4] |
doi: 10.1016/j.aap.2010.09.009 |
[5] |
doi: 10.1016/j.ssci.2013.06.010 |
[6] |
doi: 10.3390/s19194079 |
[7] |
doi: 10.1080/00140139.2014.938130 |
[8] |
doi: 10.1016/j.jsr.2018.02.012 |
[9] |
|
[10] |
郭孜政, 刘仙, 陈瑞雅, 等. 基于ERP技术的疲劳对驾驶人行为监控能力影响研究[J]. 中国公路学报, 2018, 31(8):173-180.
|
|
|
[11] |
莫秋云, 李荣敬, 李军, 等. 基于ECG指标的山区公路线形对驾驶员特性的影响研究[J]. 中国安全科学学报, 2013, 23(12):16-20.
|
|
|
[12] |
doi: 10.1007/s12239-014-0007-9 |
[13] |
|
[14] |
doi: 10.1007/s00421-019-04142-5 |
[15] |
doi: 10.1097/00006842-200107000-00020 |
[16] |
|
[17] |
|
[18] |
|
[19] |
doi: 10.1007/s00779-011-0466-1 |
[20] |
doi: 10.3390/s20185274 |
[21] |
doi: 10.1016/j.isprsjprs.2016.01.011 |
[1] | NIU Tianhui, GENG Dianqiao, YUAN Yi, ZHAO Liang, DONG Hui, WANG Bai. Research status and prospect of fire origin determination based on fire traces [J]. China Safety Science Journal, 2024, 34(1): 238-246. |
[2] | WEN Huiying, HUANG Kunhuo, ZHAO Sheng. Prediction of rear-end collision risk of freeway trucks based on machine learning [J]. China Safety Science Journal, 2023, 33(9): 173-180. |
[3] | JIN Chunling, JI Zhaotai, GONG Li, AN Xiang, ZHOU Yi. Evaluation model of rockburst intensity of diversion tunnel based on WOA-SVM [J]. China Safety Science Journal, 2023, 33(9): 41-48. |
[4] | ZHAO Wei, LI Shuquan. Prediction model of safety competency of construction workers based on machine learning [J]. China Safety Science Journal, 2023, 33(7): 51-57. |
[5] | DUAN Zaipeng, LI Fan, GUO Jin, LI Jiong. Integrated warning model for structural safety of buildings in urban waterlogged area [J]. China Safety Science Journal, 2023, 33(7): 173-180. |
[6] | ZHANG Xiliang, JIAO Haokai, LI Erbao. Prediction of vibration velocity of deep blasting based on transfer learning [J]. China Safety Science Journal, 2023, 33(6): 64-72. |
[7] | DUAN Zaipeng, LI Jiong, LI Fan, LIU Biqiang. Structural safety early warning model of rural reconstruction houses [J]. China Safety Science Journal, 2023, 33(4): 100-106. |
[8] | ZHU Tong, QIN Dan, WEI Wen, REN Jie, FENG Yidong. Research on accident risk identification and influencing factors of bus drivers based on machine learning [J]. China Safety Science Journal, 2023, 33(2): 23-30. |
[9] | HE Shubo, XIANG Wei, SHI Zhongmiao. Risk early warning of electric vehicle battery system based on machine learning [J]. China Safety Science Journal, 2023, 33(2): 159-165. |
[10] | GUO Zhen, JIA Xiaoyan, LI Fumin, HU Yan, YAN Qiuyan. Fast prediction for building fire spread based on machine learning [J]. China Safety Science Journal, 2023, 33(11): 117-125. |
[11] | ZHOU Zhansong, WANG Yusong, XIANG Yuhong, MA Jinfei. Effects of acute stress on cognitive processing of train drivers and safe driving [J]. China Safety Science Journal, 2022, 32(S2): 243-247. |
[12] | XIAO Zhiming, LIU Wen, YANG Jianfang, QIAO Han. Influence of psychological states on train drivers' safety performance [J]. China Safety Science Journal, 2022, 32(S2): 13-18. |
[13] | ZHU Xin, LI Jianwei, GUO Wei, BI Sheng, WU Yuefei. Forest fire risk prediction model based on machine learning [J]. China Safety Science Journal, 2022, 32(9): 152-157. |
[14] | CHEN Yongqiang, WU Zhipeng, YANG Xiangjuan, CHEN Pu, SUN Shuli. Review on regional seismic analysis software [J]. China Safety Science Journal, 2022, 32(9): 126-136. |
[15] | ZHANG Kai, ZHANG Ke. Prediction study on slope stability based on LightGBM algorithm [J]. China Safety Science Journal, 2022, 32(7): 113-120. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||