China Safety Science Journal ›› 2024, Vol. 34 ›› Issue (1): 238-246.doi: 10.16265/j.cnki.issn1003-3033.2024.01.2351
Previous Articles Next Articles
NIU Tianhui1,2(), GENG Dianqiao1,2,**(
), YUAN Yi2, ZHAO Liang2, DONG Hui2, WANG Bai3
Received:
2023-08-12
Revised:
2023-11-15
Online:
2024-01-28
Published:
2024-07-28
CLC Number:
NIU Tianhui, GENG Dianqiao, YUAN Yi, ZHAO Liang, DONG Hui, WANG Bai. Research status and prospect of fire origin determination based on fire traces[J]. China Safety Science Journal, 2024, 34(1): 238-246.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cssjj.com.cn/EN/10.16265/j.cnki.issn1003-3033.2024.01.2351
[1] |
|
[2] |
仇俊飞. 建筑火灾调查工作存在的问题及对策[J]. 今日消防, 2022, 7(2):109-111.
|
|
|
[3] |
全国商业消防与安全协会. 统计发布/火灾统计/2020年全国火灾数据出炉[OL]. [2021-02-26]. http://www.ncfcsa.org/.
|
[4] |
|
[5] |
National Fire Protection Association. NFPA 921: guide for fire and explosion investigations 2014 editio[Z], 2014:921-925.
|
[6] |
袁勇, 王建英. 论火灾调查中对起火部位和起火点的认定[J]. 武警学院学报, 2009, 25(2):81-83.
|
|
|
[7] |
doi: 10.1007/s00366-019-00738-9 |
[8] |
doi: 10.1007/s10694-015-0553-3 |
[9] |
孙振文, 石屹, 张冠男, 等. 火灾调查中的关键要素演变及逆向推演[J]. 刑事技术, 2022, 47(3):261-267.
|
|
|
[10] |
陈屹, 林震. 烟熏痕迹在火灾调查中的作用[J]. 浙江消防, 2003(10):37-38.
|
|
|
[11] |
doi: 10.1023/B:FIRE.0000016841.07530.64 |
[12] |
doi: 10.1186/s40038-014-0005-z |
[13] |
张良. 火场通风与火灾烟气痕迹的关联性研究[D]. 天津: 天津商业大学, 2013.
|
|
|
[14] |
鲁志宝, 梁国福, 杨淳旭. 易燃液体燃烧烟气在空间不同位置的沉积规律[J]. 消防科学与技术, 2011, 30(9):860-862.
|
|
|
[15] |
|
[16] |
|
[17] |
|
[18] |
doi: 10.1007/s10694-012-0273-x |
[19] |
|
[20] |
刘旭. 不同火源位置对烟熏痕迹影响的FDS模拟研究[J]. 武警学院学报, 2010, 26(2):80-83.
|
|
|
[21] |
王薪宇, 王芸, 张金专, 等. 单室墙角火壁面烟熏痕迹特征研究[J]. 消防科学与技术, 2020, 39(5):727-730.
|
|
|
[22] |
徐晓楠, 吴迪, 施照成. 基于FDS的壁面烟熏图痕试验及重构研究[J]. 安全与环境学报, 2014, 14(6):102-106.
|
|
|
[23] |
doi: 10.1016/j.tust.2015.03.004 |
[24] |
郑斌, 陈国华. 化工火灾事故起火点推断技术及判据研究[J]. 消防科学与技术, 2011, 30(6):545-550.
|
|
|
[25] |
郑胜中. 火灾调查中起火点和引火源的认定研究[J]. 今日消防, 2020, 5(8):123-124.
|
|
|
[26] |
|
[27] |
doi: 10.1016/j.buildenv.2011.11.010 |
[28] |
|
[29] |
|
[30] |
doi: 10.1007/s12273-014-0164-9 |
[31] |
doi: 10.1016/j.buildenv.2006.11.001 |
[32] |
|
[33] |
doi: 10.1016/j.csfs.2014.01.001 |
[34] |
doi: 10.1007/s10694-011-0250-9 |
[35] |
|
[36] |
doi: 10.1016/j.proeng.2013.08.136 |
[37] |
|
[38] |
|
[39] |
刘全义, 朱博, 邓力, 等. 基于机器学习的双参数火灾探测方法[J]. 中国安全科学学报, 2022, 32(5):90-96.
doi: 10.16265/j.cnki.issn1003-3033.2022.05.0874 |
doi: 10.16265/j.cnki.issn1003-3033.2022.05.0874 |
|
[40] |
|
[41] |
doi: 10.1109/Access.6287639 |
[42] |
|
[43] |
doi: 10.1016/j.compchemeng.2019.03.012 |
[44] |
|
[45] |
doi: 10.1007/s10694-020-00985-z |
[46] |
|
[47] |
祝玉华, 司艺艺, 李智慧. 基于深度学习的烟雾与火灾检测算法综述[J]. 计算机工程与应用, 2022, 58(23):1-11.
doi: 10.3778/j.issn.1002-8331.2206-0154 |
doi: 10.3778/j.issn.1002-8331.2206-0154 |
|
[48] |
doi: 10.1109/TIP.2015.2475625 pmid: 26340772 |
[49] |
doi: 10.1109/TII.2017.2657545 |
[50] |
doi: 10.1109/TPAMI.2015.2437384 |
[51] |
|
[52] |
|
[53] |
张苗, 李璞, 杨漪, 等. 基于目标检测卷积神经网络的图像型火灾探测算法[J]. 消防科学与技术, 2022, 41(6):807-811.
|
|
|
[54] |
|
[55] |
doi: 10.1109/Access.6287639 |
[56] |
|
[57] |
|
[58] |
|
[59] |
doi: 10.1007/s10694-019-00886-w |
[60] |
doi: 10.1007/s10694-013-0384-z |
[1] | JIN Chunling, JI Zhaotai, GONG Li, AN Xiang, ZHOU Yi. Evaluation model of rockburst intensity of diversion tunnel based on WOA-SVM [J]. China Safety Science Journal, 2023, 33(9): 41-48. |
[2] | WEN Huiying, HUANG Kunhuo, ZHAO Sheng. Prediction of rear-end collision risk of freeway trucks based on machine learning [J]. China Safety Science Journal, 2023, 33(9): 173-180. |
[3] | ZHAO Wei, LI Shuquan. Prediction model of safety competency of construction workers based on machine learning [J]. China Safety Science Journal, 2023, 33(7): 51-57. |
[4] | DUAN Zaipeng, LI Fan, GUO Jin, LI Jiong. Integrated warning model for structural safety of buildings in urban waterlogged area [J]. China Safety Science Journal, 2023, 33(7): 173-180. |
[5] | ZHANG Xiliang, JIAO Haokai, LI Erbao. Prediction of vibration velocity of deep blasting based on transfer learning [J]. China Safety Science Journal, 2023, 33(6): 64-72. |
[6] | DUAN Zaipeng, LI Jiong, LI Fan, LIU Biqiang. Structural safety early warning model of rural reconstruction houses [J]. China Safety Science Journal, 2023, 33(4): 100-106. |
[7] | ZHU Tong, QIN Dan, WEI Wen, REN Jie, FENG Yidong. Research on accident risk identification and influencing factors of bus drivers based on machine learning [J]. China Safety Science Journal, 2023, 33(2): 23-30. |
[8] | HE Shubo, XIANG Wei, SHI Zhongmiao. Risk early warning of electric vehicle battery system based on machine learning [J]. China Safety Science Journal, 2023, 33(2): 159-165. |
[9] | GUO Zhen, JIA Xiaoyan, LI Fumin, HU Yan, YAN Qiuyan. Fast prediction for building fire spread based on machine learning [J]. China Safety Science Journal, 2023, 33(11): 117-125. |
[10] | ZHU Xin, LI Jianwei, GUO Wei, BI Sheng, WU Yuefei. Forest fire risk prediction model based on machine learning [J]. China Safety Science Journal, 2022, 32(9): 152-157. |
[11] | CHEN Yongqiang, WU Zhipeng, YANG Xiangjuan, CHEN Pu, SUN Shuli. Review on regional seismic analysis software [J]. China Safety Science Journal, 2022, 32(9): 126-136. |
[12] | ZHANG Kai, ZHANG Ke. Prediction study on slope stability based on LightGBM algorithm [J]. China Safety Science Journal, 2022, 32(7): 113-120. |
[13] | LIU Kun, JIAO Yubo, ZHANG Xiaoming, CHEN Xiaoyu, JIANG Chaozhe. Test of railway train drivers' stress by using ECG signal [J]. China Safety Science Journal, 2022, 32(6): 31-37. |
[14] | YANG Wenchen, ZHOU Yanning, TIAN Bijiang, GUO Fengxiang, HU Chengyu. Traffic accident severity prediction for secondary highways based on cluster analysis and SVM model [J]. China Safety Science Journal, 2022, 32(5): 163-169. |
[15] | LIU Quanyi, ZHU Bo, DENG Li, SHI Hang, LIANG Guanghua. Double parameters fire detection method based on machine learning [J]. China Safety Science Journal, 2022, 32(5): 90-96. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||