China Safety Science Journal ›› 2025, Vol. 35 ›› Issue (12): 129-138.doi: 10.16265/j.cnki.issn1003-3033.2025.12.0198
• Safety engineering technology • Previous Articles Next Articles
YIN Xiaojun1(
), DING Yong1,**(
), LI Denghua2,3
Received:2025-06-20
Revised:2025-09-18
Online:2025-12-27
Published:2026-06-28
Contact:
DING Yong
CLC Number:
YIN Xiaojun, DING Yong, LI Denghua. Application of LSTM model with multi-algorithm fusion factor screening in dam deformation prediction[J]. China Safety Science Journal, 2025, 35(12): 129-138.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cssjj.com.cn/EN/10.16265/j.cnki.issn1003-3033.2025.12.0198
Table 2
Impact of SU threshold on prediction performance
| 测点 | SU阈值 | 保留因 子数 | RMSE | MAE | R2 |
|---|---|---|---|---|---|
| J-06 | 0.7 | 9 | 0.721 4 | 0.592 1 | 0.964 0 |
| 0.75 | 8 | 0.688 2 | 0.557 8 | 0.970 3 | |
| 0.8 | 7 | 0.665 0 | 0.532 4 | 0.974 8 | |
| 0.85 | 5 | 0.673 1 | 0.542 0 | 0.971 5 | |
| 0.9 | 4 | 0.702 8 | 0.562 3 | 0.965 9 | |
| J2-02-1 | 0.7 | 10 | 0.823 5 | 0.698 7 | 0.962 6 |
| 0.75 | 9 | 0.793 2 | 0.670 1 | 0.967 1 | |
| 0.8 | 8 | 0.785 7 | 0.662 5 | 0.974 2 | |
| 0.85 | 6 | 0.791 4 | 0.668 9 | 0.970 4 | |
| 0.9 | 4 | 0.812 9 | 0.681 5 | 0.963 8 |
Table 3
Comparison of the prediction performance of the screening methods
| 测点 | 筛选方法 | MSE | RMSE | MAE | R2 |
|---|---|---|---|---|---|
| J-06 | 未筛选 | 0.600 8 | 0.775 1 | 0.641 3 | 0.965 8 |
| 相关系数法 | 0.507 2 | 0.712 2 | 0.505 9 | 0.971 1 | |
| 随机森林 | 0.442 3 | 0.665 0 | 0.532 4 | 0.974 8 | |
| LASSO回归 | 0.416 3 | 0.64 52 | 0.524 5 | 0.976 3 | |
| 未再筛选 | 0.312 0 | 0.558 5 | 0.442 5 | 0.982 2 | |
| 本文方法 | 0.245 7 | 0.495 7 | 0.398 5 | 0.986 0 | |
| J2-02-1 | 未筛选 | 0.866 1 | 0.930 6 | 0.721 8 | 0.963 8 |
| 相关系数法 | 0.753 3 | 0.867 9 | 0.758 3 | 0.968 5 | |
| 随机森林 | 0.617 3 | 0.785 7 | 0.662 5 | 0.974 2 | |
| LASSO回归 | 0.612 1 | 0.782 4 | 0.635 5 | 0.974 4 | |
| 未再筛选 | 0.566 9 | 0.752 9 | 0.591 6 | 0.976 3 | |
| 文中方法 | 0.452 9 | 0.673 0 | 0.509 0 | 0.981 1 |
Table 4
Evaluation indexes of each model
| 测点 | 预测模型 | MSE | RMSE | MAE | R2 |
|---|---|---|---|---|---|
| J-06 | XGBoost | 0.529 4 | 0.727 6 | 0.610 3 | 0.969 8 |
| 随机森林 | 0.467 1 | 0.683 4 | 0.496 9 | 0.973 4 | |
| LightGBM | 0.430 9 | 0.656 4 | 0.503 4 | 0.975 5 | |
| GRU | 0.329 3 | 0.573 8 | 0.445 0 | 0.981 2 | |
| LSTM | 0.245 7 | 0.495 7 | 0.398 5 | 0.986 0 | |
| J2-02-1 | XGBoost | 0.764 3 | 0.874 2 | 0.635 8 | 0.968 1 |
| 随机森林 | 0.600 7 | 0.775 0 | 0.627 1 | 0.974 9 | |
| LightGBM | 0.565 7 | 0.752 1 | 0.594 2 | 0.976 4 | |
| GRU | 0.547 1 | 0.739 6 | 0.590 4 | 0.977 2 | |
| LSTM | 0.452 9 | 0.673 0 | 0.509 0 | 0.981 1 |
Table 5
Comparison of cross-validation and original results for J06
| 数据来源 | MSE | RMSE | MAE | R2 |
|---|---|---|---|---|
| 原文测试集 | 0.245 7 | 0.495 7 | 0.398 5 | 0.986 0 |
| 第1折 | 0.248 3 | 0.498 3 | 0.401 2 | 0.985 6 |
| 第2折 | 0.251 7 | 0.501 7 | 0.403 8 | 0.985 1 |
| 第3折 | 0.243 1 | 0.493 1 | 0.395 2 | 0.986 5 |
| 第4折 | 0.253 4 | 0.503 4 | 0.406 8 | 0.984 7 |
| 第5折 | 0.249 6 | 0.499 6 | 0.401 9 | 0.985 5 |
| 交叉验证 平均 | 0.249 2± 0.003 9 | 0.499 2± 0.003 9 | 0.401 8± 0.004 4 | 0.985 5± 0.000 7 |
Table 6
Comparison of cross-validation and original results for J2-02-1
| 数据来源 | MSE | RMSE | MAE | R2 |
|---|---|---|---|---|
| 原文测试集 | 0.452 9 | 0.673 0 | 0.509 0 | 0.981 1 |
| 第1折 | 0.458 2 | 0.676 9 | 0.514 3 | 0.980 5 |
| 第2折 | 0.462 7 | 0.680 2 | 0.518 1 | 0.979 8 |
| 第3折 | 0.447 5 | 0.668 9 | 0.503 7 | 0.982 0 |
| 第4折 | 0.453 8 | 0.673 6 | 0.510 2 | 0.980 9 |
| 第5折 | 0.459 1 | 0.677 6 | 0.515 0 | 0.980 2 |
| 交叉验证 平均 | 0.456 3± 0.006 1 | 0.675 4± 0.004 7 | 0.512 3± 0.005 8 | 0.980 7± 0.000 9 |
| [1] |
吴中如. 水工建筑物安全监控理论及其应用[M]. 北京: 高等教育出版社, 2003:1.
|
| [2] |
周仁练, 苏怀智, 韩彰, 等. 混凝土坝变形的长期预测模型与应用[J]. 水力发电学报, 2021, 40(9):122-131.
|
|
|
|
| [3] |
|
| [4] |
|
| [5] |
doi: 10.1007/s00521-023-08383-6 |
| [6] |
赵佳蕊, 王玲芝, 李晨阳. 基于LEA-LSTM的光伏发电功率短期预测方法[J]. 电力信息与通信技术, 2024, 22(11):34-42.
|
|
|
|
| [7] |
罗璐, 李志, 张启灵. 大坝变形预测的最优因子长短期记忆网络模型[J]. 水力发电学报, 2023, 42(2):24-35.
|
|
|
|
| [8] |
郑好, 李登华, 丁勇. 基于集成因子优选算法的面板堆石坝变形预测模型[J]. 排灌机械工程学报, 2025, 43(2):178-186.
doi: 10.3969/j.issn.1674-8530.23.0262 |
|
doi: 10.3969/j.issn.1674-8530.23.0262 |
|
| [9] |
|
| [10] |
蒙伟, 何川, 陈子全, 等. 岭回归在岩体初始地应力场反演中的应用[J]. 岩土力学, 2021, 42(4):1156-1169.
|
|
|
|
| [11] |
袁冬阳, 顾冲时, 顾昊. 严寒地区混凝土重力坝变形行为分析与预测模型[J]. 水利学报, 2022, 53(6):733-746.
|
|
|
|
| [12] |
徐韧, 苏怀智, 杨立夫. 基于GP-XGBoost的大坝变形预测模型[J]. 水利水电科技进展, 2021, 41 (5): 41-46,70.
|
|
|
|
| [13] |
|
| [14] |
何裕坤, 晁阳, 李同春, 等. 基于SBO-LSTM的大坝变形预测模型[J]. 水利水电技术:中英文, 2024, 55 (增1): 78-86.
|
|
|
|
| [15] |
吉丽萍, 黄景涛, 李一凡, 等. 一种基于多信息融合的风电功率预测特征选择方法[J]. 兰州理工大学学报, 2024, 50 (5): 94-100.
|
|
|
|
| [16] |
doi: 10.1016/j.ensm.2023.02.034 |
| [17] |
高浩田, 李东喜, 陈泽华, 等. 基于交互式多特征融合算法的药物靶标预测[J]. 太原理工大学学报, 2024, 55(4): 751-758.
|
|
|
|
| [18] |
王晓楠, 苏文浩, 董灵波. 应用特征选择和机器学习方法建立兴安落叶松单木树龄预测模型[J]. 东北林业大学学报, 2024, 52 (11): 64-71,82.
|
|
|
|
| [19] |
毛杰, 陈宓舟, 许磊, 等. 基于双重选择LASSO模型的我国股市定价因子边际有效性研究[J]. 系统工程理论与实践, 2024, 44 (9): 2993-3008.
doi: 10.12011/SETP2023-0831 |
|
|
|
| [20] |
刘天翼, 艾星星, 张九丹. 基于MLR-DE-LSTM的大坝变形串联组合预测模型[J]. 中国农村水利水电, 2025(2):207-212.
|
|
|
|
| [21] |
史云峰, 韩晓明, 王利红, 等. 基于特征选择和机器学习的锂电池寿命早期预测[J]. 现代电子技术, 2024, 47 (22): 90-98.
|
|
|
|
| [22] |
|
| [1] | ZANG Yanjie. Research on prediction method of coal spontaneous combustion degree based on IWOA-LightGBM [J]. China Safety Science Journal, 2025, 35(S1): 64-70. |
| [2] | QIN Yueping, TANG Fei, WANG Hairong, WANG Peng, GUO Mingyan, WANG Shibin. Prediction model and interpretability analysis of wind temperature in mine water-drenched shaft based on KOA-BiLSTM [J]. China Safety Science Journal, 2025, 35(7): 40-47. |
| [3] | LU Jiale, ZHANG Nian, NIU Mengmeng, WAN Fei. Hazard prediction model of tunnel water inrush based on stacking ensemble learning [J]. China Safety Science Journal, 2025, 35(4): 137-144. |
| [4] | QI Yun, XUE Kailong, LI Xuping, WANG Wei, BAI Chenhao, JI Zhunze. Slope stability prediction model based on multi-strategy improved SSA for optimizing KELM [J]. China Safety Science Journal, 2025, 35(3): 92-98. |
| [5] | WANG Wei, CUI Xinchao, QI Yun, LI Xuping, WANG Huangrui, QI Qingjie. Improving SSA and optimizing BPNN for coal gas permeability prediction model [J]. China Safety Science Journal, 2025, 35(2): 137-143. |
| [6] | FAN Bosong, SHAO Chunfu, WANG Jingsheng, LIU Dong. Model on discriminating risk causes and consequence severity of urban traffic emergencies [J]. China Safety Science Journal, 2025, 35(2): 220-226. |
| [7] | WANG Dan, PAN Xianglian. Construction safety accident prediction model based on GWO-RF [J]. China Safety Science Journal, 2025, 35(10): 75-81. |
| [8] | TENG Chunyang, LI Qingjian, CHEN Jingang, ZHANG Jianfei, XUE Guoqing. Remaining life prediction of roller bearings based on N-BEATS [J]. China Safety Science Journal, 2024, 34(S1): 246-252. |
| [9] | GAO Fei, LIANG Ning, JIA Zhe, HOU Qing. Prediction model of coal spontaneous combustion based on SSA-RBF neural network [J]. China Safety Science Journal, 2024, 34(8): 128-137. |
| [10] | ZHAO Chuan, LIU Siqi, ZHAO Xiaoyi. MET prediction model of muscle fatigue in drilling with simulated overhand position [J]. China Safety Science Journal, 2024, 34(8): 238-246. |
| [11] | WANG Wenchao, HE Jian, SONG Baisheng, WANG Lei. Prediction model of pilot maneuver stability based on LSTM [J]. China Safety Science Journal, 2024, 34(12): 48-55. |
| [12] | MA Hui, HE Yingxia, CHEN Yangyang. Prediction of urban sewage pipeline defect probability based on XGBoost [J]. China Safety Science Journal, 2024, 34(11): 163-171. |
| [13] | LI Delong, CHENG Yu, LI Youdong. Prediction model for demand for subway security inspectors under public health emergencies [J]. China Safety Science Journal, 2023, 33(S1): 228-234. |
| [14] | WEN Huiying, HUANG Kunhuo, ZHAO Sheng. Prediction of rear-end collision risk of freeway trucks based on machine learning [J]. China Safety Science Journal, 2023, 33(9): 173-180. |
| [15] | LIU Dan, WANG Ruihu, LYU Wei, QIN Ling, LIN Shuichun. SOH monitoring of new energy vehicle lithium batteries based on IPSO-LSTM [J]. China Safety Science Journal, 2023, 33(9): 94-102. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||