China Safety Science Journal ›› 2023, Vol. 33 ›› Issue (4): 100-106.doi: 10.16265/j.cnki.issn1003-3033.2023.04.1221
• Safety engineering technology • Previous Articles Next Articles
DUAN Zaipeng1,2(), LI Jiong3, LI Fan3, LIU Biqiang1,**(
)
Received:
2022-11-20
Revised:
2023-02-18
Online:
2023-04-28
Published:
2023-10-28
Contact:
LIU Biqiang
DUAN Zaipeng, LI Jiong, LI Fan, LIU Biqiang. Structural safety early warning model of rural reconstruction houses[J]. China Safety Science Journal, 2023, 33(4): 100-106.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cssjj.com.cn/EN/10.16265/j.cnki.issn1003-3033.2023.04.1221
Tab.1
Summary of predicted values and independent variables
变量名及符号 | 具体分类 | 变量 类型 |
---|---|---|
风险隐患Y | 暂无安全隐患/有安全隐患 | 离散 |
用地性质X1 | 国有/集体土地 | 离散 |
建筑年份X2 | 连续变量无分类 | 连续 |
建筑面积X3 | 连续变量无分类 | 连续 |
地上层数X4 | 连续变量无分类 | 连续 |
地下层数X5 | 连续变量无分类 | 连续 |
基础类型X6 | 独立/条形/桩基础/其他 | 离散 |
设计情况X7 | 未经正规设计/农村套用农村 建房标准图集/农村经注册建 筑师结构师设计/经有资质单 位设计 | 离散 |
有无施工草图X8 | 有/无 | 离散 |
是否有审批手续X9 | 是/否 | 离散 |
是否委托施工单位 或建筑工匠X10 | 是/否 | 离散 |
结构形式X11 | 石/砖混/土木/钢筋混凝土/ 底部框架-上部砖混/木/钢/ 其他类型 | 离散 |
数据来源X12 | 公安/手工/App录入 | 离散 |
6大类型X13 | 篇幅原因,见注释 | 离散 |
是否贫困户X14 | 是/否 | 离散 |
Tab.2
Partial sample of dataset
序号 | 建筑年 龄/a | 建筑面 积/m2 | 国有 土地 | 集体 土地 | 地上层 数 | 地下层 数 | … | 是否贫 困户 | 排查结论 (是否有安全隐患) |
---|---|---|---|---|---|---|---|---|---|
1 | -0.533 360 | -0.345 014 | 0 | 1 | -0.983 840 | -0.108 625 | … | 0 | 0 |
2 | 0.106 496 | -0.028 971 | 0 | 1 | 0.289 895 | -0.108 625 | … | 1 | 0 |
3 | -1.226 537 | -0.028 971 | 0 | 1 | 0.289 895 | -0.108 625 | … | 0 | 0 |
4 | -1.119 894 | -0.247 770 | 0 | 1 | -0.983 840 | -0.108 625 | … | 0 | 0 |
5 | 0.106 496 | 1.065 025 | 0 | 1 | 0.926 763 | -0.108 625 | … | 0 | 0 |
Tab.3
Comparison table of classical machine learning algorithms
序号 | 算法种类 | label | 召回率 | 精确率 | F2 | 混淆矩阵 | 总体准确度 |
---|---|---|---|---|---|---|---|
1 | GNB | 暂无安全隐患 | 0.265 | 0.794 | 0.306 | [[104 288] [27 364]] | 0.598 |
有安全隐患 | 0.931 | 0.558 | 0.821 | ||||
2 | KNN | 暂无安全隐患 | 0.829 | 0.804 | 0.824 | [[325 67] [79 312]] | 0.814 |
有安全隐患 | 0.8 | 0.823 | 0.803 | ||||
3 | SVM | 暂无安全隐患 | 0.793 | 0.816 | 0.8 | [[311 81] [70 321]] | 0.807 |
有安全隐患 | 0.821 | 0.8 | 0.816 | ||||
4 | LR | 暂无安全隐患 | 0.747 | 0.749 | 0.748 | [[293 99] [98 293]] | 0.748 |
有安全隐患 | 0.749 | 0.747 | 0.75 | ||||
5 | DT | 暂无安全隐患 | 0.763 | 0.779 | 0.766 | [[299 93] [85 306]] | 0.773 |
有安全隐患 | 0.783 | 0.767 | 0.779 |
Tab.4
Comparison of integrated algorithms
序号 | 算法种类 | label | F2 | 混淆矩阵 | 总体准确度 |
---|---|---|---|---|---|
1 | 提升法 | 暂无安全隐患 | 0.641 | [[242 150] [79 312]] | 0.708 |
有安全隐患 | 0.78 | ||||
2 | 袋装法 | 暂无安全隐患 | 0.816 | [[320 72] [ 72 319]] | 0.816 |
有安全隐患 | 0.816 | ||||
3 | 投票法 | 暂无安全隐患 | 0.788 | [[303 89] [ 52 339]] | 0.82 |
有安全隐患 | 0.851 | ||||
4 | 堆叠法 | 暂无安全隐患 | 0.876 | [[348 44] [ 71 320]] | 0.853 |
有安全隐患 | 0.83 | ||||
5 | 随机森林 | 暂无安全隐患 | 0.849 | [[336 56] [ 75 316]] | 0.833 |
有安全隐患 | 0.816 | ||||
6 | XGBoost | 暂无安全隐患 | 0.495 | [[137 255] [ 25 366]] | 0.642 |
有安全隐患 | 0.723 |
Tab.5
Key early warning indicators
α、γ=1 | α=0.833,γ=0.642 |
---|---|
①建筑面积(0.220,11.00%);②建筑年份(0.158,18.89%);③无施工草图(0.153,26.52%);④非6大重点排查房屋(0.136,33.3%);⑤独立基础(0.132,39.91%);⑥用于出租特别的群组牟利的城乡结合部自建房(0.121,45.96%);⑦地上层数(0.114,51.64%);⑧手工录入(0.079,55.60%);⑨未经正规设计(0.072,59.21%);⑩无资质设计、无资质施工的房屋(含厂房)(0.064,62.42%);11石结构(0.055,65.17%);12擅自加层、改扩建的房屋(0.053,67.81%);13公安导入(0.051,70.38%);14生产、经营、居住功能混杂的“三合一”自建房(0.051,72.82%);15未知6大重点排查类(0.049,75.38%);16未知基础(0.044,77.59%);17条形基础(0.038,79.49%) | ①建筑面积(0.181,12.25%);②建筑年龄(0.126,20.83%);③无施工草图(0.106,28.00%);④非6大重点排查房屋(0.100,34.75%);⑤独立基础(0.093,41.04%);⑥地上层数(0.090,47.16%);⑦用于出租特别的群组牟利的城乡结合部自建房(0.087,53.04%);⑧手工录入(0.055,56.77%);⑨未经正规设计(0.047,59.97%);⑩无资质设计、无资质施工的房屋(含厂房)(0.046,63.11%);11石结构(0.041,65.88%);12擅自加层、改扩建的房屋(0.038,68.46%);13公安导入(0.037,71.00%);14生产、经营、居住功能混杂的“三合一”自建房(0.033,73.23%);15未知六大重点排查类(0.032,75.42%);16未知基础(0.032,77.60%);17条形基础(0.029,79.59%) |
[1] |
新京报. 湖南长沙“4·29”居民自建房倒塌事故共造成54人死亡[EB/OL].(2022-05-16).
|
[2] |
张和辉, 袁建勤. 对农村房屋安全隐患排查工作的调查与研究:以福建省清流县嵩口镇大元村为例[J]. 农村实用技术, 2022(2):127-129,132.
|
[3] |
周志华. 农村危房改造的影响因素分析及对策研究[J]. 工程建设与设计, 2021(24):198-201.
|
|
|
[4] |
黄海. 遵义市农村危房改造存在的问题及技术要点分析[J]. 工程技术研究, 2021, 6(21):104-105.
|
[5] |
蔡正杰. 江西农村危房加固改造技术的应用研究[D]. 南昌: 南昌航空大学, 2018.
|
|
|
[6] |
田涛. 农村危房改造影响因素分析与对策研究[J]. 工程建设标准化, 2020(10):70-77.
|
|
|
[7] |
胡隆文. 关于新型城镇化进程中农村旧房改造的几点思考[J]. 农村经济与科技, 2021, 32(6):249-250.
|
[8] |
李尧. 乡村振兴背景下危房改造的问题分析及对策:以J县为例[D]. 济南: 山东大学, 2021.
|
|
|
[9] |
doi: 10.4028/www.scientific.net/AMM.351-352 |
[10] |
doi: 10.1088/1755-1315/218/1/012059 |
[11] |
doi: 10.1007/s11069-013-0860-2 |
[12] |
doi: 10.3390/geosciences8020076 |
[13] |
doi: 10.14577/kirua.2014.16.4.59 |
[14] |
严己. 基于安全生产标准化体系的安全生产预警系统的构建[J]. 山西科技, 2016, 31(4):139-143.
|
[15] |
JGJ 125—1999, 危险房屋鉴定标准[S].
|
JGJ 125-1999, Standard for appraisal of dangerous buildings[S].
|
|
[16] |
李滋禾. 高层房屋建筑施工安全风险研究[D]. 西安: 西安理工大学, 2016.
|
|
|
[17] |
中国勘察设计协会施工图审查分会. 深化施工图审查管理切实保障公众安全:关于《房屋建筑和市政基础设施工程施工图设计文件审查管理办法》的学习认识[J]. 中国勘察设计, 2013(9):14-16.
|
[18] |
林琳, 杨春香, 黄沿才. 泉州农村自建房安全隐患现状分析[J]. 建筑安全, 2021, 36(1):48-50.
|
[19] |
邢玉龙, 王剑, 上官伟, 等. 面向海量不平衡数据的轨道电路故障诊断方法[J]. 中国安全科学学报, 2022, 32(5):112-118.
doi: 10.16265/j.cnki.issn1003-3033.2022.05.2389 |
doi: 10.16265/j.cnki.issn1003-3033.2022.05.2389 |
|
[20] |
doi: 10.1613/jair.953 |
[21] |
刘全义, 朱博, 邓力, 等. 基于机器学习的双参数火灾探测方法[J]. 中国安全科学学报, 2022, 32(5):90-96.
doi: 10.16265/j.cnki.issn1003-3033.2022.05.0874 |
doi: 10.16265/j.cnki.issn1003-3033.2022.05.0874 |
|
[22] |
周志华. 机器学习[M]. 北京: 清华大学出版社, 2016:73-75,139-140, 164-165.
|
[23] |
|
[24] |
doi: 10.1007/s11587-015-0246-8 |
[25] |
doi: 10.1016/j.proeng.2011.08.800 |
[26] |
方匡南, 吴见彬, 朱建平, 等. 随机森林方法研究综述[J]. 统计与信息论坛, 2011, 26(3):32-38.
|
[27] |
连克强. 基于Boosting的集成树算法研究与分析[D]. 北京: 中国地质大学(北京), 2018.
|
|
|
[28] |
doi: 10.1198/000313006X152243 |
[1] | YANG Xiangqian, ZHANG Pingru, WU Shengnan, ZHANG Laibin, LI Zhong, FENG Huanzhi. Early prediction and warning of offshore drilling overflow based on data model collaboration [J]. China Safety Science Journal, 2024, 34(4): 93-100. |
[2] | NIU Tianhui, GENG Dianqiao, YUAN Yi, ZHAO Liang, DONG Hui, WANG Bai. Research status and prospect of fire origin determination based on fire traces [J]. China Safety Science Journal, 2024, 34(1): 238-246. |
[3] | JIN Chunling, JI Zhaotai, GONG Li, AN Xiang, ZHOU Yi. Evaluation model of rockburst intensity of diversion tunnel based on WOA-SVM [J]. China Safety Science Journal, 2023, 33(9): 41-48. |
[4] | WEN Huiying, HUANG Kunhuo, ZHAO Sheng. Prediction of rear-end collision risk of freeway trucks based on machine learning [J]. China Safety Science Journal, 2023, 33(9): 173-180. |
[5] | ZHAO Wei, LI Shuquan. Prediction model of safety competency of construction workers based on machine learning [J]. China Safety Science Journal, 2023, 33(7): 51-57. |
[6] | DUAN Zaipeng, LI Fan, GUO Jin, LI Jiong. Integrated warning model for structural safety of buildings in urban waterlogged area [J]. China Safety Science Journal, 2023, 33(7): 173-180. |
[7] | ZHANG Xiliang, JIAO Haokai, LI Erbao. Prediction of vibration velocity of deep blasting based on transfer learning [J]. China Safety Science Journal, 2023, 33(6): 64-72. |
[8] | ZHU Tong, QIN Dan, WEI Wen, REN Jie, FENG Yidong. Research on accident risk identification and influencing factors of bus drivers based on machine learning [J]. China Safety Science Journal, 2023, 33(2): 23-30. |
[9] | HE Shubo, XIANG Wei, SHI Zhongmiao. Risk early warning of electric vehicle battery system based on machine learning [J]. China Safety Science Journal, 2023, 33(2): 159-165. |
[10] | GUO Zhen, JIA Xiaoyan, LI Fumin, HU Yan, YAN Qiuyan. Fast prediction for building fire spread based on machine learning [J]. China Safety Science Journal, 2023, 33(11): 117-125. |
[11] | ZHU Xin, LI Jianwei, GUO Wei, BI Sheng, WU Yuefei. Forest fire risk prediction model based on machine learning [J]. China Safety Science Journal, 2022, 32(9): 152-157. |
[12] | CHEN Yongqiang, WU Zhipeng, YANG Xiangjuan, CHEN Pu, SUN Shuli. Review on regional seismic analysis software [J]. China Safety Science Journal, 2022, 32(9): 126-136. |
[13] | ZHANG Kai, ZHANG Ke. Prediction study on slope stability based on LightGBM algorithm [J]. China Safety Science Journal, 2022, 32(7): 113-120. |
[14] | LIU Kun, JIAO Yubo, ZHANG Xiaoming, CHEN Xiaoyu, JIANG Chaozhe. Test of railway train drivers' stress by using ECG signal [J]. China Safety Science Journal, 2022, 32(6): 31-37. |
[15] | YANG Wenchen, ZHOU Yanning, TIAN Bijiang, GUO Fengxiang, HU Chengyu. Traffic accident severity prediction for secondary highways based on cluster analysis and SVM model [J]. China Safety Science Journal, 2022, 32(5): 163-169. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||