中国安全科学学报 ›› 2024, Vol. 34 ›› Issue (10): 197-204.doi: 10.16265/j.cnki.issn1003-3033.2024.10.1230

• 公共安全 • 上一篇    下一篇

基于LDA主题模型的在途驾驶风格识别方法

汪娇1(), 刘锴2,**(), 栗慧哲1, 曹鹏3, 王秋玲4   

  1. 1 大连理工大学 交通运输学院,辽宁 大连 116024
    2 大连理工大学 经济管理学院,辽宁 大连 116024
    3 西南交通大学 交通运输与物流学院,四川 成都 610031
    4 长安大学 运输工程学院,陕西 西安 710064
  • 收稿日期:2024-04-15 修回日期:2024-07-17 出版日期:2024-10-28
  • 通信作者:
    ** 刘锴(1978—),男,江苏南京人,博士,教授,主要从事多源交通数据的精细化处理、数据融合、交通安全等方面的研究。E-mail:
  • 作者简介:

    汪 娇 (1999—),女,辽宁锦州人,硕士研究生,主要研究方向为驾驶风格、人机共驾驶、轨迹预测等。E-mail:

    曹鹏, 副教授;

    王秋玲, 副教授

  • 基金资助:
    国家自然科学基金资助(61903313); 国家自然科学基金资助(52202396); 四川省自然科学基金资助(2022NSFSC0476); 宁夏自治区揭榜挂帅重点项目(2023BBF01004)

En-route driving style recognition method based on LDA

WANG Jiao1(), LIU Kai2,**(), LI Huizhe1, CAO Peng3, WANG Qiuling4   

  1. 1 School of Transportation and Logistics, Dalian University of Technology, Dalian Liaoning 116024, China
    2 School of Economics and Management, Dalian University of Technology, Dalian Liaoning 116024, China
    3 School of Transportation and Logistics, Southwest Jiaotong University, Chengdu Sichuan 610031,China
    4 College of Transportation Engineering, Chang'an University,Xi'an Shaanxi 710064, China
  • Received:2024-04-15 Revised:2024-07-17 Published:2024-10-28

摘要:

为增强人机共驾条件下智能系统对个体驾驶行为的理解,提出一种基于潜在狄利克雷分配(LDA)主题模型的在途驾驶风格识别方法,从多维度挖掘车辆轨迹信息,快速提取和识别驾驶员潜在驾驶风格特征。首先,建立驾驶行为语义理解规则,从驾驶作业的场景感知层、模式层、操作层以及车辆状态层出发,将连续的轨迹时序数据阐述为驾驶行为语义理解词汇;其次,根据主题困惑度和主题一致性指标定义4类习惯性驾驶风格:稳定型、保守型、适中型以及激进型;最后,将每位驾驶员的在途驾驶风格识别为上述驾驶风格的概率组合。结果表明: 所提出的在途驾驶风格识别方法考虑驾驶员在驾驶过程中的异质性和不一致性,能够解释同一驾驶员在不同驾驶环境下表现出差异化驾驶风格的现象,同时,有助于提高驾驶风格在途识别的全面性以及可理解性。

关键词: 潜在狄利克雷分配(LDA)主题模型, 在途驾驶风格, 轨迹数据, 语义理解, 驾驶行为

Abstract:

To enhance the intelligent system's understanding of individual driving behavior under human-machine interaction driving circumstances, an en-route driving style recognition method based on LDA model was proposed. The method explored vehicle trajectory information from multi-dimensions to quickly extract and identify latent driving style features of drivers. Firstly, the semantic understanding rules of driving behavior were established to discretize continuous trajectory data into semantic vocabularies of driving behavior, considering the scene perception layer, pattern layer, operation layer and vehicle status layer. Secondly, according to topic perplexity and consistency, habitual driving styles were classified into four categories: stable, conservative, moderate and aggressive. Finally, each driver's en-route driving style was identified as a probabilistic combination of the aforementioned driving styles. The results show that the proposed en-route driving style recognition method considers drivers' heterogeneity and explains the phenomenon of the same driver exhibiting different driving styles in varying driving environments. Additionally, this research improves the comprehensiveness and comprehensibility of en-route driving style recognition.

Key words: latent Dirichlet allocation (LDA) topic model, en-route driving style, trajectory data, semantic understanding, driving behaviour

中图分类号: