China Safety Science Journal ›› 2025, Vol. 35 ›› Issue (4): 165-172.doi: 10.16265/j.cnki.issn1003-3033.2025.04.0474
• Safety engineering technology • Previous Articles Next Articles
HE Yuzhen1(), WANG Wenjie1, CHEN Zhongjie2
Received:
2024-11-21
Revised:
2025-02-13
Online:
2025-04-28
Published:
2025-10-28
CLC Number:
HE Yuzhen, WANG Wenjie, CHEN Zhongjie. Downward layered mining based on G1-RF combined empowerment cloud model evaluation of filling stability[J]. China Safety Science Journal, 2025, 35(4): 165-172.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cssjj.com.cn/EN/10.16265/j.cnki.issn1003-3033.2025.04.0474
Table 1
Description of stability index of filling body
指标名称 | 指标说明 |
---|---|
矿体埋 深X1 | 充填体随埋深增加更易发生变形或沉降。目前埋深等级分类标准相关研究较少,而地应力等级在一定程度上可表征埋深等级[ |
矿体倾 角X2 | 一般来说矿体倾角越小,充填体稳定性越高。矿体倾角的分类通常采用几何学和地质学原理,将矿体按照倾斜角度分为平缓倾斜、中等倾斜、陡峭倾斜和极陡倾斜4个等级[ |
地下水条 件X3 | 充填体中的水分既减小其之间的黏聚力又降低剪切强度;同时地下水中溶解物质不仅对充填体造成溶解作用,还降低其强度 |
围岩稳定 性X4 | 围岩对充填体有一定局部支撑作用,不仅可以承载充填体本身重力,而且可以降低承载层上的力,使充填体更稳定 |
充填体黏 聚力X5 | 充填体内部颗粒之间存在相互吸引力或黏结力,高黏聚力使充填体颗粒之间相互作用更强,从而提高充填体整体强度不易于被破坏[ |
充填体密 度X6 | 当向充填体施加更大垂直应力时,可以增加充填体密实度和抗压强度。在水化反应过程中,大量自由水会被消耗掉,而且随着反应强度增加,充填体密度增大,其稳定性也提高[ |
充填体暴 露面积X7 | 骨料中值粒径指充填材料中颗粒尺寸分布中的中间值,骨料粒径越小,充填体暴露面积越大,不仅更易受到自然力侵蚀,而且受到顶板剪切力应力作用越明显,充填体越不稳定[ |
垂直应力与 水平应力比X8 | 提高其整体稳定性;增加水平应力可以提高充填体的整体强度,减少水平变形和开裂。因此二者比值越小,对充填体稳定性更有益[ |
骨料中值 粒径X9 | 充填体中水分会使其之间黏聚力减小,导致充填体剪切强度降低;充填体会更加密实,变形幅度会越小,抗压强度越好,也会减小充填体渗透性[ |
充填体抗 压强度X10 | 抗压强度是反映充填体稳定性的重要力学性质,高抗压强度意味着充填体能够更好承受来自底层和上覆岩层的垂直应力,从而减小充填体发生沉降和变形的可能性[ |
充填体接 顶效果X11 | 充填体与上部岩层或底层接触关系直接影响着充填体承载强度,充填体接顶效果越好,充填体稳定性越高[ |
爆破扰动X12 | 爆破扰动会引起地下振动,导致充填体松动或产生裂隙,从而减弱其支撑作用。爆破扰动根据岩爆烈度所对应的4个等级所产生的灾害影响大小转换为爆破扰动定性分级[ |
Table 2
Quantitative indicator classification criteria for stability assessment of filling body
风险 等级 | X1/km | X2/(°) | X5/MPa | X6/(g·cm-3) | X7/m2 | X8 | X9/μm | X10/MPa |
---|---|---|---|---|---|---|---|---|
Ⅰ | <0.3 | <10 | ≥0.2 | ≥2.5 | <150 | <1.2 | <40 | ≥2.0 |
Ⅱ | [0.3,0.6) | [10,30) | [0.15,0.2) | [1.6,2.5) | [150,250) | [1.2,1.8) | [40,70) | [1.5,2.0) |
Ⅲ | [0.6,2) | [30,60) | [0.10,0.15) | [1.2,1.6) | [250,350) | [1.8,2.4) | [70,100) | [1.0,1.5) |
Ⅳ | ≥2 | ≥60 | <0.1 | <1.2 | ≥350 | ≥2.4 | ≥100 | <1.0 |
Table 3
Qualitative indicator classification criteria for stability assessment of filling body
风险等级 | X3 | X4 | X11 | X12 | 赋值 |
---|---|---|---|---|---|
Ⅰ | 不出现透水现象,围岩干燥 | 围岩坚固,稳定性高 | 料浆均匀稳定,接顶效果好 | 无明显影响,充填无变形、裂缝等 | 0~2 |
Ⅱ | 岩体受地下水影响较小 | 节理发育,岩质较硬 | 料浆沉降率小,大部分接顶 | 引起充填体轻微变形或裂缝 | 2~4 |
Ⅲ | 围岩岩体受地下水影响比较大 | 节理发育明显,岩石质地较软 | 料浆分层离析明显,少部分接顶 | 引起较明显的变形、裂缝或局部坍塌 | 4~6 |
Ⅳ | 地下水发育明显,岩体长期含水 | 岩体破碎 | 料浆分层严重,未接顶 | 导致充填体严重破坏,大范围坍塌失稳 | 6~8 |
Table 4
Cloud digital characteristics of stability indicators of filling bodies under different grades
评价指标 | (He,Ex,En) | |||
---|---|---|---|---|
Ⅰ级 | Ⅱ级 | Ⅲ级 | Ⅳ级 | |
X1 | (0.05,0.15,0.05) | (0.05,0.45,0.05) | (0.05,1.30,0.23) | (0.05,2.00,0.23) |
X2 | (0.05,5.00,1.67) | (0.05,20.00,3.33) | (0.05,45.00,5.00) | (0.05,60.00,5.00) |
X3 | (0.05,1.00,0.33) | (0.05,3.00,0.33) | (0.05,5.00,0.33) | (0.05,7.00,0.33) |
X4 | (0.05,1.00,0.33) | (0.05,3.00,0.33) | (0.05,5.00,0.33) | (0.05,7.00,0.33) |
X5 | (0.05,0.20,0.01) | (0.05,0.18,0.01) | (0.05,0.13,0.01) | (0.05,0.05,0.02) |
X6 | (0.05,2.50,0.15) | (0.05,2.05,0.15) | (0.05,1.40,0.07) | (0.05,0.60,0.20) |
X7 | (0.05,75.00,25.00) | (0.05,225.00,25.00) | (0.05,375.00,25.00) | (0.05,450.00,25.00) |
X8 | (0.05,0.60,0.20) | (0.05,1.50,0.10) | (0.05,2.10,0.10) | (0.05,2.70,0.10) |
X9 | (0.05,20.00,6.67) | (0.05,55.00,5.00) | (0.05,85.00,5.00) | (0.05,100.00,5.00) |
X10 | (0.05,2.00,0.08) | (0.05,1.75,0.08) | (0.05,1.25,0.08) | (0.05,0.50,0.17) |
X11 | (0.05,1.00,0.33) | (0.05,3.00,0.33) | (0.05,5.00,0.33) | (0.05,7.00,0.33) |
X12 | (0.05,1.00,0.33) | (0.05,3.00,0.33) | (0.05,5.00,0.33) | (0.05,7.00,0.33) |
Table 5
Training sample data
矿山 | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | X11 | X12 | 目标值 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S1 | 0.87 | 70 | 2.8 | 4.8 | 0.096 | 1.56 | 120 | 2.76 | 165 | 3.40 | 4.3 | 4.4 | 0.666 |
S2 | 0.91 | 75 | 4.4 | 4.2 | 0.590 | 2.06 | 210 | 1.50 | 155 | 4.50 | 4.6 | 4.7 | 0.618 |
S3 | 1.10 | 67 | 3.2 | 5.0 | 0.750 | 2.70 | 312 | 1.61 | 178 | 6.40 | 4.0 | 4.2 | 0.659 |
S4 | 0.53 | 79 | 4.5 | 6.6 | 0.530 | 3.10 | 237 | 1.59 | 172 | 5.10 | 3.9 | 4.5 | 0.637 |
S5 | 0.48 | 65 | 5.4 | 4.6 | 0.720 | 1.60 | 150 | 0.96 | 163 | 3.50 | 4.2 | 3.5 | 0.492 |
S6 | 0.62 | 35 | 4.0 | 5.8 | 0.220 | 2.61 | 175 | 2.89 | 150 | 3.32 | 3.7 | 6.2 | 0.683 |
[1] |
唐鸣东, 杨宁, 熊晓辉, 等. 基于CFOA-PNN网络的采场顶板沉降量预测[J]. 有色金属工程, 2021, 11(7):107-113.
|
|
|
[2] |
张霞, 何南. 综合评价方法分类及适用性研究[J]. 统计与决策, 2022, 38(6):31-36.
|
|
|
[3] |
李夕兵, 魏威, 赵彬. 充填系统稳定性评价指标体系的构建及定量分析[J]. 科技导报, 2013, 31(31):43-47.
|
|
|
[4] |
王石, 张钦礼, 王新民. SD在金川龙首矿充填系统稳定性预测中的应用[J]. 中国安全科学学报, 2014, 24(9): 159-165.
|
|
|
[5] |
史俊伟, 陈章良, 吴昌友, 等. 基于GRA-SPA耦合模型的煤矿充填系统稳定性评判[J]. 中国安全科学学报, 2018, 28(4):97-102.
doi: 10.16265/j.cnki.issn1003-3033.2018.04.017 |
doi: 10.16265/j.cnki.issn1003-3033.2018.04.017 |
|
[6] |
黄旭, 叶聪林, 陈家钊, 等. 基于G1法和云化物元模型的充填体稳定性评价[J]. 矿业研究与开发, 2024, 44(1):13-18.
|
|
|
[7] |
曹平, 张科, 万琳辉, 等. 金川矿山深部采掘条件下岩石力学研究与实践[J]. 岩石力学与工程学报, 2012, 31(7):1334-1341.
|
|
|
[8] |
余伟健, 高谦. 充填采矿优化设计中的综合稳定性评价指标[J]. 中南大学学报:自然科学版自然科学版, 2011, 42(8):2475-2484.
|
|
|
[9] |
王石, 魏美亮, 宋学朋, 等. 基于改进CRITIC-G1法组合赋权云模型的高阶段充填体稳定性分析[J]. 重庆大学学报, 2022, 45(2):68-80.
|
|
|
[10] |
王新民, 张国庆, 李帅, 等. 高阶段大跨度充填体稳定性评估[J]. 中国安全科学学报, 2015, 25(6):91-97.
|
|
|
[11] |
王石, 宋学朋, 石海天. 基于云模型和改进CRITIC的深井垂直充填管道磨损风险评估[J]. 重庆大学学报, 2020, 43(4):73-84.
|
|
|
[12] |
胡社荣, 戚春前, 赵胜利, 等. 我国深部矿井分类及其临界深度探讨[J]. 煤炭科学技术, 2010, 38(7):10-13, 43.
|
|
|
[13] |
刘锋, 马凤山, 郭慧高, 等. 矿体倾角、几何形态及开采方式对充填体稳定性的影响[J]. 工程地质学报, 2018, 26(增1): 740-744.
|
|
|
[14] |
刘志祥, 李夕兵, 张义平. 基于混沌优化的高阶段充填体可靠性分析[J]. 岩土工程学报, 2006, 28(3):348-352.
|
|
|
[15] |
宋学朋, 郝宇鑫, 王石, 等. 不同加载速率下差异性含水率尾砂胶结充填体力学行为及损伤特性研究[J]. 材料导报, 2022, 36(24):103-112.
|
|
|
[16] |
|
[17] |
|
[18] |
邓玉彬, 周益龙, 林永生. 我国下向分层充填采矿法现状及发展趋势[J]. 采矿技术, 2021, 21(2):9-12.
|
[19] |
马凤山, 卢蓉, 郭捷, 等. 金川二矿区大体积充填体变形的三维数值模拟[J]. 工程地质学报, 2019, 27(1):14-20.
|
|
|
[20] |
|
[21] |
黄灏, 乔登攀. 毛坪铅锌矿下向水平分层充填体布筋优化研究[J]. 采矿技术, 2023, 23(3):143-148.
|
[1] | LI Yanjun, XIA Huahua, YAN Hongshuai, LIU Kewei, SONG Ruitao. Safety evaluation of metro station construction in confined space under 500 kV high-voltage lines [J]. China Safety Science Journal, 2025, 35(4): 204-210. |
[2] | XUE Le, YU Lu, JIN Longzhe, LI Bo, SHEN Wenjin. Causal analysis of highway accidents considering filling in missing values based on RF-Apriori algorithm [J]. China Safety Science Journal, 2025, 35(4): 211-218. |
[3] | ZHENG Xuezhao, DONG Beibei, TONG Xin, WANG Yishuo. Emergency rescue equipment support capability assessment model [J]. China Safety Science Journal, 2025, 35(1): 194-201. |
[4] | CHEN Guangyao, LI Sihao, LIANG Yangze, XIA Zhenzhao, XU Zhao. Susceptibility evaluation based on connection cloud model and improved conflict evidence fusion method for debris flow disaster [J]. China Safety Science Journal, 2024, 34(8): 222-230. |
[5] | RUAN Shunling, HAN Simiao, YIN Yihan, LIU Di, LIU Jiajia, JIANG Song. Tailings accumulation dam safety state analysis by integrating heterogeneous hierarchical graph [J]. China Safety Science Journal, 2024, 34(7): 53-62. |
[6] | LI Changming, ZHAO Kaigong, ZHANG Xiaolei, WANG Ruidi, LI Yansu. Cloud model for risk evaluation of coal mine intelligent projects and its application [J]. China Safety Science Journal, 2024, 34(5): 168-174. |
[7] | WU Jianjun, CHEN Yan, ZHU Qinghua, HU Shenping. Emergency ship maneuvering method for crossing encounter situation under immediate danger threat [J]. China Safety Science Journal, 2024, 34(5): 238-246. |
[8] | WANG Dongying, CHEN Xiaoping, LIU Quan, ZHAO Tianhao, YAN Xu. Risk ranking of oil and gas pipeline based on improved cloud model-FMEA [J]. China Safety Science Journal, 2024, 34(5): 61-68. |
[9] | PAN Hanchuan, LIU Danyang, ZHANG Yurui, LIU Zhigang, SHANG Bin. Urban rail transit line operation safety evaluation based on combined weighting-extension cloud method [J]. China Safety Science Journal, 2024, 34(4): 160-166. |
[10] | CHEN Na, HU Yitong, YUAN Yingfeng, QIN Xiangnan, LIU Jun. Risk assessment of firefighter training injury based on game theory combinatorial weighting and cloud model [J]. China Safety Science Journal, 2024, 34(4): 232-238. |
[11] | HUANG Guoping, LEI Haoxiang. Comprehensive evaluation of emergency logistics suppliers based on cloud TOPSIS method [J]. China Safety Science Journal, 2024, 34(2): 217-224. |
[12] | LI Feng, ZHANG Laibin, DONG Shaohua, CHEN Lin, ZHANG Hang. Research on sealing failure risk assessment of station flange system based on EWM-AHP-cloud model [J]. China Safety Science Journal, 2023, 33(9): 150-156. |
[13] | MO Junwen, WANG Ruirui, TENG Cangguo. Assessment of unsafe behavior of construction personnel in high-altitude railway projects [J]. China Safety Science Journal, 2023, 33(8): 30-38. |
[14] | WEI Lin, LI Lihua, QIN Liqiang, XIAO Yanhui, TANG Yuguang. Comprehensive evaluation of emergency response capability of urban subway terrorist attacks [J]. China Safety Science Journal, 2023, 33(7): 213-221. |
[15] | LUO Zhenhua, GUO Juntao, HAN Jianqiang. Construction safety risk assessment of prefabricated subway station based on cloud model [J]. China Safety Science Journal, 2023, 33(6): 88-95. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||