China Safety Science Journal ›› 2022, Vol. 32 ›› Issue (3): 144-151.doi: 10.16265/j.cnki.issn1003-3033.2022.03.020
• Safety engineering technology • Previous Articles Next Articles
XIONG Yu1(), KONG Dezhong1,**(
), YANG Shengli2, WU Guiyi1, ZUO Yujun1, CHENG Zhanbo3
Received:
2021-12-11
Revised:
2022-02-15
Online:
2022-08-23
Published:
2022-09-28
Contact:
KONG Dezhong
XIONG Yu, KONG Dezhong, YANG Shengli, WU Guiyi, ZUO Yujun, CHENG Zhanbo. Cloud model identification of coal face stability in steeply inclined working faces[J]. China Safety Science Journal, 2022, 32(3): 144-151.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cssjj.com.cn/EN/10.16265/j.cnki.issn1003-3033.2022.03.020
Tab.1
Classification of evaluation indexes of coal face stability
评价指标 | 评价等级 | |||
---|---|---|---|---|
I级 | Ⅱ级 | Ⅲ级 | IV级 | |
C1 | 0.6~0.8 | 0.8~0.9 | 0.9~1 | 1~1.2 |
C2/% | 80~100 | 60~80 | 40~60 | <40 |
C3/% | 80~100 | 60~80 | 40~60 | <40 |
C4/MPa | >1.5 | 1~1.5 | 0.5~1 | <0.5 |
C5/(°) | >35 | 30~35 | 25~30 | <25 |
C6(0~100) | 0~20 | 20~40 | 40~60 | 60~100 |
C7(0~100) | 0~20 | 20~40 | 40~60 | 60~100 |
C8/m | 0.7~2 | 2~3.5 | 3.5~5 | >5 |
C9/(°) | 0~20 | 20~35 | 35~45 | 45~55 |
C10/(°) | 3.5~5 | 5~6.5 | 6.5~8 | >8 |
C11/% | 85~100 | 65~85 | 40~65 | <40 |
Tab.2
Calculation results of judgment matrix
判断 矩阵 | 特征向量Uj | 指标权重ωj | 一致性比 率CR | 一致性 检验 |
---|---|---|---|---|
MA | (0.368 51, 0.341 74, 0.289 75) | 0.368 5, 0.341 7, 0.289 8 | 0.002 913 | 通过 |
MB1 | (0.558 42, 0.319 62, 0.121 96) | 0.558 4, 0.319 6, 0.122 0 | 0.015 771 | 通过 |
MB2 | (0.389 4, 0.377 44, 0.131 1, 0.102 06) | 0.389 4, 0.377 4, 0.131 1, 0.102 1 | 0.030 33 | 通过 |
MB3 | (0.476 85, 0.269 65, 0.173 99, 0.079 511) | 0.476 9, 0.269 6, 0.174 0, 0.079 5 | 0.021 975 | 通过 |
Tab.4
Cloud digital characteristics of comprehensive standard of various indexes
评价指标 | 评价标准等级 | ||||
---|---|---|---|---|---|
Ⅰ级 | Ⅱ级 | Ⅲ级 | Ⅳ级 | ||
一级 指标 | B1 | (0.136 3,0.045 3,0.05) | (0.364 2,0.030 2,0.05) | (0.547 5,0.030 2,0.05) | (0.819 5,0.060 3,0.05) |
B2 | (0.119 2,0.039 9,0.05) | (0.357 5,0.039 9,0.05) | (0.595 8,0.039 9,0.05) | (0.857 5,0.047 8,0.05) | |
B3 | (0.124 6,0.041 5,0.05) | (0.369 7,0.040 0,0.05) | (0.601 7,0.037 1,0.05) | (0.853 9,0.047 7,0.05) | |
总指标 | (0.127 1,0.042 4,0.05) | (0.363 5,0.036 4,0.05) | (0.579 7,0.035 5,0.05) | (0.842 5,0.052 4,0.05) |
Tab.5
Digital characteristics of second level indexes
二级 指标 | 评价指标值 | Ex | En | He | |
---|---|---|---|---|---|
最大 | 最小 | ||||
C1 | 0.97 | 0.71 | 0.401 5 | 0.073 | 0.1 |
C2 | 81 | 71.5 | 0.237 5 | 0.015 8 | 0.12 |
C3 | 90 | 75 | 0.175 | 0.025 | 0.12 |
C4 | 0.6 | 0.34 | 0.765 | 0.021 7 | 0.09 |
C5 | 22 | 20 | 0.95 | 0.016 7 | 0.09 |
C6 | 70 | 55 | 0.625 | 0.15 | 0.13 |
C7 | 65 | 45 | 0.55 | 0.033 | 0.12 |
C8 | 3.9 | 2.3 | 0.38 | 0.043 3 | 0.09 |
C9 | 50 | 23 | 0.7 | 0.07 | 0.09 |
C10 | 7 | 5 | 0.385 | 0.051 7 | 0.09 |
C11 | 70 | 45 | 0.575 | 0.041 7 | 0.14 |
[1] |
伍永平, 贠东风, 解盘石, 等. 大倾角煤层长壁综采:进展、实践、科学问题[J]. 煤炭学报, 2020, 45(1):24-34.
|
|
|
[2] |
李立, 于雷, 张世青, 等. 大采高大倾角工作面煤壁片帮机理分析[J]. 煤炭工程, 2020, 52(12):102-107.
|
|
|
[3] |
|
[4] |
王红伟, 伍永平, 焦建强, 等. 大倾角煤层大采高工作面倾角对煤壁片帮的影响机制[J]. 采矿与安全工程学报, 2019, 36(4):728-735,752.
|
|
|
[5] |
王红伟, 伍永平, 解盘石, 等. 大倾角煤层长壁大采高工作面煤壁稳定性的采厚效应[J]. 采矿与安全工程学报, 2018, 35(1):64-70.
|
|
|
[6] |
doi: 10.1016/j.ijrmms.2017.10.002 |
[7] |
杨敬轩, 刘长友, 吴锋锋, 等. 煤层硬夹矸对大采高工作面煤壁稳定性影响机理研究[J]. 采矿与安全工程学报, 2013, 30(6):856-862.
|
|
|
[8] |
伍永平, 杨文斌, 解盘石, 等. 大倾角大采高工作面煤矸互层顶板漏冒规律研究[J]. 煤炭工程, 2020, 52(12):85-90.
|
|
|
[9] |
张浩, 伍永平. 大倾角煤层长壁大采高采场煤壁片帮机制[J]. 采矿与安全工程学报, 2019, 36(2):331-337.
|
|
|
[10] |
|
[11] |
陈刘瑜, 李希建, 毕娟, 等. 基于AHP-TOPSIS的冲击型煤与瓦斯突出倾向性预测[J]. 中国安全科学学报, 2020, 30(4):47-52.
doi: 10.16265/j.cnki.issn1003-3033.2020.04.008 |
doi: 10.16265/j.cnki.issn1003-3033.2020.04.008 |
|
[12] |
|
[13] |
吴孟龙, 叶义成, 胡南燕, 等. RAGA-PPC云模型在边坡稳定性评价中的应用[J]. 中国安全科学学报, 2019, 29(9):57-63.
doi: 10.16265/j.cnki.issn1003-3033.2019.09.009 |
doi: 10.16265/j.cnki.issn1003-3033.2019.09.009 |
|
[14] |
解盘石, 张颖异, 张艳丽, 等. 大倾角大采高煤矸互层顶板失稳规律及对支架的影响[J]. 煤炭学报, 2021, 46(2):344-356.
|
|
|
[15] |
李海涛. 煤体强度对煤壁稳定性的影响研究[J]. 煤炭工程, 2020, 52(8):118-122.
|
|
|
[16] |
郭卫彬. 大采高工作面煤壁稳定性及其与支架的相互影响机制研究[D]. 徐州: 中国矿业大学, 2015.
|
|
|
[17] |
张浩. 大倾角煤层长壁大采高综采工作面煤壁稳定性分析[D]. 西安: 西安科技大学,2016.
|
|
|
[18] |
冯长根, 李杰, 李生才. 层次分析法在中国安全科学研究中的应用[J]. 安全与环境学报, 2018, 18(6):2126-2130.
|
|
|
[19] |
张科学, 亢磊, 何满潮, 等. 矿井煤层冲击危险性多层次综合评价研究[J]. 煤炭科学技术, 2020, 48(8):82-89.
|
|
|
[20] |
田睿, 孟海东, 陈世江, 等. RF-AHP-云模型下岩爆烈度分级预测模型[J]. 中国安全科学学报, 2020, 30(7):166-172.
doi: 10.16265/j.cnki.issn1003-3033.2020.07.025 |
doi: 10.16265/j.cnki.issn1003-3033.2020.07.025 |
[1] | LI Changming, ZHAO Kaigong, ZHANG Xiaolei, WANG Ruidi, LI Yansu. Cloud model for risk evaluation of coal mine intelligent projects and its application [J]. China Safety Science Journal, 2024, 34(5): 168-174. |
[2] | ZHU Anfeng, FAN Xiufang, DU Wenrui, SUN Wanxin, XU Gang. Comprehensive evaluation of disaster prevention and mitigation capacity of emergency shelters based on resilience perspective: a case study of Ouhai district in Wenzhou [J]. China Safety Science Journal, 2024, 34(5): 223-230. |
[3] | WU Jianjun, CHEN Yan, ZHU Qinghua, HU Shenping. Emergency ship maneuvering method for crossing encounter situation under immediate danger threat [J]. China Safety Science Journal, 2024, 34(5): 238-246. |
[4] | WANG Dongying, CHEN Xiaoping, LIU Quan, ZHAO Tianhao, YAN Xu. Risk ranking of oil and gas pipeline based on improved cloud model-FMEA [J]. China Safety Science Journal, 2024, 34(5): 61-68. |
[5] | PAN Hanchuan, LIU Danyang, ZHANG Yurui, LIU Zhigang, SHANG Bin. Urban rail transit line operation safety evaluation based on combined weighting-extension cloud method [J]. China Safety Science Journal, 2024, 34(4): 160-166. |
[6] | CHEN Na, HU Yitong, YUAN Yingfeng, QIN Xiangnan, LIU Jun. Risk assessment of firefighter training injury based on game theory combinatorial weighting and cloud model [J]. China Safety Science Journal, 2024, 34(4): 232-238. |
[7] | CHEN Liang, ZHENG Wei. Research on causes of dispatcher fatigue based on AWAHP [J]. China Safety Science Journal, 2024, 34(4): 42-49. |
[8] | HUANG Guoping, LEI Haoxiang. Comprehensive evaluation of emergency logistics suppliers based on cloud TOPSIS method [J]. China Safety Science Journal, 2024, 34(2): 217-224. |
[9] | ZHOU Haiyi, BAO Quangui, YE Mao, ZHU Shengwen, LIN Yingdian. Fuzzy comprehensive evaluation of urban bridge reliability based on combination weighting method [J]. China Safety Science Journal, 2023, 33(S1): 156-161. |
[10] | LI Feng, ZHANG Laibin, DONG Shaohua, CHEN Lin, ZHANG Hang. Research on sealing failure risk assessment of station flange system based on EWM-AHP-cloud model [J]. China Safety Science Journal, 2023, 33(9): 150-156. |
[11] | MO Junwen, WANG Ruirui, TENG Cangguo. Assessment of unsafe behavior of construction personnel in high-altitude railway projects [J]. China Safety Science Journal, 2023, 33(8): 30-38. |
[12] | WEI Lin, LI Lihua, QIN Liqiang, XIAO Yanhui, TANG Yuguang. Comprehensive evaluation of emergency response capability of urban subway terrorist attacks [J]. China Safety Science Journal, 2023, 33(7): 213-221. |
[13] | LUO Zhenhua, GUO Juntao, HAN Jianqiang. Construction safety risk assessment of prefabricated subway station based on cloud model [J]. China Safety Science Journal, 2023, 33(6): 88-95. |
[14] | CHENG Fangming, WANG Chenchen, YUAN Xiaofang. Evaluation of urban emergency management capabilities from perspective of safe development [J]. China Safety Science Journal, 2023, 33(5): 158-167. |
[15] | CHEN Na, GUO Haoran, ZHANG Zhipeng, ZHAO Jun. Evaluation of subway station flood safety resilience based on H-OWA operator and projection pursuit [J]. China Safety Science Journal, 2023, 33(4): 148-154. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||