[1] 周晨晖. 基于深度学习的煤矿复杂场景人员检测与统计分析方法研究[D]. 徐州: 中国矿业大学, 2019. ZHOU Chenhui.Research on personnel detection and statistical analysis in coal mine complex scenes based on deep learning[D]. Xuzhou: China University of Mining and Technology, 2019. [2] 孙继平. 煤矿自动化与信息化技术回顾与展望[J]. 工矿自动化, 2010,36(6) :26-30. SUN Jiping.Review and prospect of technologies of automation and informatization of coal mine[J]. Industry and Mine Automation, 2010,36(6) :26-30. [3] 杨军. 煤矿安全风险评价与预警研究[D]. 徐州: 中国矿业大学, 2013. YANG Jun.Study on appraisal and eraly-waring of safety sisk of coal mines[D]. Xuzhou: China University of Mining and Technology, 2013. [4] CHEN Hong,QI Hui, FENG Qun. Characteristics of direct causes and human factors in major gas explosion accidents in Chinese coal mines: case study spanning the years 1980-2010[J]. Journal of Loss Prevention in the Process Industries, 2013,26(1):38-44. [5] 王龙康. 煤矿安全隐患层次分析与预警方法研究[D]. 北京: 中国矿业大学(北京), 2015. WANG Longkang.The hierarchy analysis for hidden danger and research on early warning method in coal mine[D]. Beijing: China University of Mining and Technology (Beijing), 2015. [6] 张海涛. 煤矿安全监控信息管理系统的设计与实现[D]. 兰州: 兰州交通大学, 2017. ZHANG Haitao.Design and implementation of coal mine safety monitoring information management system[D].Lanzhou:Lanzhou Jiaotong University, 2017. [7] 赵亮,韩宝虎,孙魁元,等. 基于累积图像特征点匹配的智能皮带测速方法[J]. 科学技术与工程, 2021,21(12):4 990-4 994. ZHAO Liang, HAN Baohu, SUN Kuiyuan, et al. A method of intelligent speed measurement of coal conveyer belt based on accumulated feature point matching[J]. Science Technology and Engineering, 2021,21(12):4 990-4 994. [8] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587. [9] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1 904-1 916. [10] GIRSHICK R. Fast r-cnn[C].Proceedings of the IEEE International Conference on Computer Vision, 2015: 1 440-1 448. [11] 刘开南.基于递归卷积神经网络的煤矿智能监控安全生产管理平台关键技术研究[J]. 中国煤炭, 2018,44(12):84-87. LIU Kainan.Research on key technology of coal mine intellgent monitoring and safety production management platform based on recursive convolution neural neteork[J].China Coal , 2018,44(12):84-87. [12] 杨小彬,周世禄,李 娜,等. 深度学习及其在煤矿安全领域的应用[J]. 煤矿安全, 2019, 50(1):253-256. YANG Xiaobin, ZHOU Shilu, LI Na, et al. Deep learning and its application in coal mine safety[J]. Safety in Coal Mines, 2019, 50(1):253-256. [13] 张梅,荣昆,张啸. 煤矿井下人员跟踪管理系统研究[J]. 煤矿机械, 2020, 41(12):172-175. ZHANG Mei, RONG Kun, ZHANG Xiao.Research on personnel tracking management system for underground coal mine[J]. Coal Mine Machinery, 2020, 41(12):172-175. [14] 朱光.改进RSSI加权质心算法在井下人员定位中的应用研究[J]. 中国矿业, 2018, 27(12) :198-201. ZHU Guang.Application research of improved RSSI weighted centroid algorithm in downhole personnel positioning[J].China Mining Magazine, 2018, 27(12) :198-201. [15] 徐桂涛.煤矿视频监控系统中人员目标跟踪算法的研究与实现[D]. 徐州: 中国矿业大学, 2019. XU Guitao.Research and implementation of personnel target tracking algorithm for video surveillance system in coal mine[D]. Xuzhou: China University of Mining and Technology, 2019. |