中国安全科学学报 ›› 2023, Vol. 33 ›› Issue (8): 142-148.doi: 10.16265/j.cnki.issn1003-3033.2023.08.1474

• 安全工程技术 • 上一篇    下一篇

基于生存分析的自动驾驶接管时间分析

王长帅(), 徐铖铖**(), 邵永成, 佟昊, 彭畅   

  1. 东南大学 交通学院,江苏 南京 210096
  • 收稿日期:2023-03-12 修回日期:2023-06-16 出版日期:2023-10-08
  • 通讯作者:
    **徐铖铖(1987—),男,江苏南京人,博士,教授,主要从事智能交通、智能网联自动驾驶与交通大数据等方面的研究。E-mail:
  • 作者简介:

    王长帅 (1995—),男,河南南阳人,博士研究生,研究方向为交通安全、自动驾驶、交通仿真及控制。E-mail:

    徐铖铖 教授

  • 基金资助:
    国家自然科学基金资助(52172343); 江苏省杰出青年基金资助(BK20211515); 江苏省研究生科研与实践创新计划项目(KYCX22_0272)

Analysis of takeover time of automated driving based on survival analysis

WANG Changshuai(), XU Chengcheng**(), SHAO Yongcheng, TONG Hao, PENG Chang   

  1. School of Transportation, Southeast University, Nanjing Jiangsu 210096, China
  • Received:2023-03-12 Revised:2023-06-16 Published:2023-10-08

摘要:

为探究有条件自动驾驶接管过程中非驾驶相关任务、接管请求时间、接管事件类型及交通流量对接管时间的影响,利用正交试验原理设计并搭建接管场景,招募驾驶人进行自动驾驶接管试验,采集试验过程中的车辆运行状态及驾驶人行为数据,分析不同因素对驾驶人接管时间的影响,并构建随机效应生存分析模型,预测接管时间。结果表明:与无次任务相比,执行非驾驶相关任务会显著增加接管时间;接管请求时间为4 s时的接管时间要显著小于5和6 s时的接管时间;与施工区事件相比,事故车辆与换道并减速事件下驾驶人的接管时间较长;交通流量越大,接管时间越短。相比于固定效应生存分析模型,随机效应生存分析模型能揭示数据中未观测到的异质性,具有良好的拟合优度及预测效果。

关键词: 自动驾驶, 接管时间, 驾驶模拟, 生存分析, 随机效应

Abstract:

In order to gain a comprehensive understanding of the impacts of factors including non-driving related tasks, takeover request lead time, type of takeover events, and traffic volume on takeover time during the automated driving takeover process, an orthogonal experimental design was applied to develop the takeover scenarios. Drivers were recruited to participate in the takeover experiments based on a driving simulator, with driver behavior and vehicle trajectory data collected. Factors' impacts on drivers' takeover time were analyzed, and a random-effect survival duration model was developed to predict takeover time. Results reveal that compared with no secondary tasks, performing the non-driving related tasks increased takeover time significantly. When the takeover request lead time was 4 s, takeover time was shorter than that with 5 and 6 s. Takeover time in the accident car and cut-in events was longer than that for the work zone event. Moreover, larger traffic volume led to shorter takeover time. Compared with the fixed-effects survival analysis model, the random-effects survival analysis model accounted for the unobserved heterogeneity in the data and provided good goodness-of-fitness and prediction accuracy.

Key words: automated driving, takeover time, driving simulation, survival analysis, random effect