中国安全科学学报 ›› 2025, Vol. 35 ›› Issue (3): 221-231.doi: 10.16265/j.cnki.issn1003-3033.2025.03.2006

• 防灾减灾技术与工程 • 上一篇    下一篇

应急管理视角下特大库区滑坡科学观测与早期预警

叶霄1,2(), 朱鸿鹄2,3,**(), 田坤4, 李厚芝5, 张巍2, 程刚6   

  1. 1 南京信息工程大学 应急管理学院,江苏 南京 210044
    2 南京大学 地球科学与工程学院,江苏 南京 210023
    3 江苏省大地感知与控灾工程研究中心,江苏 南京 210023
    4 长江三峡勘测研究院有限公司,湖北 武汉 430019
    5 中国地质科学院 探矿工艺研究所,四川 成都 611734
    6 华北科技学院 计算机学院,河北 廊坊 065201
  • 收稿日期:2024-10-15 修回日期:2024-12-18 出版日期:2025-03-28
  • 通信作者:
    ** 朱鸿鹄( 1979—),男,江苏苏州人,博士,教授,博士生导师,主要从事地质与岩土工程安全评价、工程地质界面力学性质方面的研究。E-mail:
  • 作者简介:

    叶 霄 (1993—),男,甘肃平凉人,博士,副教授,主要从事地质灾害智能监测预警与应急管理、极端气候工程地质作用与防灾减灾等方面的研究。E-mail:

    田 坤,高级工程师;

    李厚芝,高级工程师;

    张 巍,副教授;

    程 刚,副教授

  • 基金资助:
    国家自然科学基金杰出青年基金资助(42225702); 国家重点研发计划项目(2018YFC1505104); 南京信息工程大学人才启动经费资助(2025r064)

Scientific observation and early warning of extremely large reservoir landslides from perspective of emergency management

YE Xiao1,2(), ZHU Honghu2,3,**(), TIAN Kun4, LI Houzhi5, ZHANG Wei2, CHENG Gang6   

  1. 1 School of Emergency Management, Nanjing University of Information Science & Technology, Nanjing Jiangsu 210044, China
    2 School of Earth Sciences and Engineering, Nanjing University, Nanjing Jiangsu 210023, China
    3 Jiangsu Engineering Research Center of Earth Sensing and Disaster Control, Nanjing Jiangsu 210023, China
    4 Three Gorges Geotechnical Consultants Co., Ltd., Wuhan Hubei 430019, China
    5 Institute of Exploration Technology, Chinese Academy of Geological Science, Chengdu Sichuan 611734, China
    6 School of Computer Science, North China Institute of Science and Technology, Langfang Hebei 065201, China
  • Received:2024-10-15 Revised:2024-12-18 Published:2025-03-28

摘要:

为增强极端气候下库区滑坡灾害风险的应对能力,利用多源监测数据和机器学习算法,构建一种滑坡多维科学观测和水文气象早期预警的框架。通过分析2个特大型库区滑坡的多年观测数据,包括Sentinel-1、全球导航卫星系统(GNSS)地表位移和光纤(FO)应变,识别滑坡变形的时空格局和主控因素。结合提升决策树(BDT)算法,提出基于滑带土体实时应变(RTS)的水文气象早期预警方法,并系统性地探讨极端气候背景下库区滑坡监测预警与应急管理的策略框架。结果表明:不同变形诱发机制的滑坡表现出不同的时空变形特征,滑坡活动及其演化与局部抗滑处置措施密切相关;滑坡变形具有分区独立的特点,且与极端气象水文条件高度相关;基于RTS的早期预警模型能提供明确的多因子协同预警阈值,强调应急响应导向的滑坡监测预警理念。

关键词: 应急管理, 库区滑坡, 科学观测, 早期预警, 极端气候

Abstract:

To enhance the ability to cope with reservoir landslide hazard risks under extreme climate, a framework for multi-dimensional scientific observation and hydrometeorological early warning was constructed using multi-source monitoring data and machine learning algorithms. The spatiotemporal pattern and main controlling factors of landslide deformation were identified by analyzing the multi-annual observations of the two landslide cases, involving Sentinel-1, global navigation satellite system (GNSS) surface displacement and fiber optic (FO) strain. Leveraging the boosting decision tree (BDT) algorithm, a hydrometeorological early warning method based on slip zone real-time strain (RTS) was proposed, and the generalized framework of monitoring, early warning and emergency management strategies for reservoir landslides was systematically discussed. The results indicate that landslides with different deformation mechanisms show different spatiotemporal deformation characteristics, and landslide activities are closely related to localized anti-sliding treatment measures. Landslide kinematics are characterized by subzone-independent displacements and their drivers, which are highly correlated with hydrometeorological extremes. The RTS-based early warning model provides specific hydrometeorological thresholds, emphasizing the emergency response-oriented landslide monitoring and early warning concept.

Key words: emergency management, reservoir landslide, scientific observation, early warning, extreme climate

中图分类号: