中国安全科学学报 ›› 2022, Vol. 32 ›› Issue (6): 17-22.doi: 10.16265/j.cnki.issn1003-3033.2022.06.2179

• 安全社会科学与安全管理 • 上一篇    下一篇

铁路工人人体行为识别模型

黄珍珍1,2(), 肖硕1,**(), 王钰3, 陈伟1, 王升志1, 江海峰1   

  1. 1 中国矿业大学 计算机科学与技术学院,江苏 徐州 221116
    2 中国矿业大学 图书馆,江苏 徐州 221116
    3 卡斯柯信号有限公司,北京 100070
  • 收稿日期:2022-01-12 修回日期:2022-04-14 出版日期:2022-06-28
  • 通讯作者:
    **肖 硕(1981—),男,江苏徐州人,博士,副教授,主要从事行为识别与系统安全分析等方面的研究。E-mail:
  • 作者简介:

    黄珍珍 (1981—),女,江苏徐州人,博士研究生,副研究馆员,研究方向为人体行为识别、物联网技术、大数据分析。E-mail:

    肖硕,副教授

    王钰,高级工程师

    陈伟,教授

    江海峰,副教授

  • 基金资助:
    国家自然科学基金资助(62071470); 国家自然科学基金资助(61971421); 国家自然科学基金资助(51874300); 徐州市科技计划项目(KC20167)

Human activity recognition model of railway workers

HUANG Zhenzhen1,2(), XIAO Shuo1,**(), WANG Yu3, CHEN Wei1, WANG Shengzhi1, JIANG Haifeng1   

  1. 1 School of Computer Science and Technology, China University of Mining and Technology, Xuzhou Jiangsu 221116, China
    2 Library, China University of Mining and Technology, Xuzhou Jiangsu 221116, China
    3 Casco Signal Company Limited, Beijing 100070, China
  • Received:2022-01-12 Revised:2022-04-14 Published:2022-06-28

摘要:

为提高铁路工人施工安全系数,采用基于人体行为识别(HAR)的智能化监测方法,估计铁路工人在施工过程中的动作;使用端到端自动提取数据特征的深度学习方法搭建网络,提高行为识别精度和模型泛化性;鉴于循环神经网络并行能力差,收敛时间长,提出结合空洞卷积与自注意力机制的深度学习模型;使用WISDM和MobiAct公开数据集,分别识别2个数据集上的基本动作和跌倒、撞击等行为。结果表明:相比于卷积神经网络(CNN)、长短期记忆(LSTM)网络、深度卷积LSTM网络,该模型具有更好的识别精度和性能,能够实现更准确的工人行为划分。

关键词: 铁路工人, 人体行为识别(HAR), 深度学习, 空洞卷积, 自注意力机制

Abstract:

In order to improve the construction safety factor of railway workers, the intelligent monitoring method based on HAR was used to estimate the action of railway workers in the construction process. The deep learning method of end-to-end automatic extraction of data features is applied to build a network to improve the accuracy of behavior recognition and model generalization. In view of the poor parallel ability and long convergence time of the recurrent neural network(CNN), a deep learning model combining cavity convolution and self-attention mechanism is proposed. The WISDM and MobiAct public datasets are used to identify the basic actions and fall and impact behaviors on the two datasets. The results show that compared with convolutional neural network(CNN), long-term and short-term memory(LSTM) network and deep convolutional LSTM neural network, the model has better recognition accuracy and performance, and can realize more accurate division of worker behavior.

Key words: railway workers, human activity recognition(HAR), deep learning, dilated convolution, self-attention mechanism