[1] |
晋良海, 张荣坤, 郑霞忠, 等. 隧洞钻孔作业工效及低位作业姿势研究[J]. 中国安全科学学报, 2016, 26(4): 66-71.
|
|
JIN Lianghai, ZHANG Rongkun, ZHENG Xiazhong, et al. Research on simulation of drilling work posture and optimization of lowing work posture for tunnel[J]. China Safety Science Journal, 2016, 26(4): 66-71.
|
[2] |
熊若鑫, 宋元斌, 王宇轩, 等. 基于CNN的3D姿势估计在建筑工人行为分析中的应用[J]. 中国安全科学学报, 2019, 29(7): 64-69.
doi: 10.16265/j.cnki.issn1003-3033.2019.07.011
|
|
XIONG Ruoxin, SONG Yuanbin, WANG Yuxuan, et al. Application of convolutional neural network-based 3D posture estimation in behavioral analysis of construction workers[J]. China Safety Science Journal, 2019, 29(7): 64-69.
doi: 10.16265/j.cnki.issn1003-3033.2019.07.011
|
[3] |
强茂山, 张东成, 江汉臣. 基于加速度传感器的建筑工人施工行为识别方法[J]. 清华大学学报:自然科学版, 2017, 57(12): 1338-1344.
|
|
QIANG Maoshan, ZHANG Dongcheng, JIANG Hanchen. Recognizing construction worker activities based on accelerometers[J]. Journal of Tsinghua University:Science and Technology, 2017, 57(12): 1338-1344.
|
[4] |
杜成飞. 基于机器学习的铁路工务人员行为识别方法[J]. 计算机系统应用, 2019, 28(7): 199-205.
|
|
DU Chengfei. Railway engineering staff behavior recognition method based on machine learning[J]. Computer Systems & Applications, 2019, 28(7): 199-205.
|
[5] |
CHEN Yuqing, XUE Yang. A deep learning approach to human activity recognition based on single accelerometer[C]. 2015 IEEE International Conference on Systems, Man, and Cybernetics, 2015: 1488-1492.
|
[6] |
CHEN Yuwen, ZHONG Kunhua, ZHANG Ju, et al. LSTM networks for mobile human activity recognition[C]. Proceedings of the 2016 International Conference on Artificial Intelligence:Technologies and Applications, 2016: 24-25.
|
[7] |
ORDONEZ F J, ROGGEN D. Deep convolutional and lstm recurrent neural networks for multimodal wearable activity recognition[J]. Sensors, 2016, 16(1): DOI:10.3390/s16010115.
|
[8] |
LI Bing, CUI Wei, WANG Wei, et al. Two-stream convolution augmented transformer for human activity recognition[C]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(1): 286-293.
|
[9] |
HAMAD R A, KIMURA M, YANG Longzhi, et al. Dilated causal convolution with multi-head self attention for sensor human activity recognition[J]. Neural Computing and Applications, 2021, 33(20): 13 705-13 722.
|
[10] |
韩越林, 王小玉. 多头自注意力在双曲空间下的点击率预测[J]. 北京邮电大学学报, 2021, 44(5):127-132.
|
|
HAN Yuelin, WANG Xiaoyu. Click-through rate prediction of multi-head self-attention in hyperbolic space[J]. Journal of Beijing University of Posts and Telecommunications, 2021, 44(5): 127-132.
doi: 10.13190/j.jbupt.2021-017
|
[11] |
KWAPISZ J R, WEISS G M, MOORE S A. Activity recognition using cell phone accelerometers[J]. ACM SigKDD Explorations Newsletter, 2011, 12(2): 74-82.
doi: 10.1145/1964897.1964918
|
[12] |
CHATZAKI C, PEDIADITIS M, VAVOULAS G, et al. Human daily activity and fall recognition using a smartphone's acceleration sensor[C]. International Conference on Information and Communication Technologies for Ageing Well and e-Health, 2016: 100-118.
|
[13] |
HASSAN M M, GUMAEI A H, ALOI G, et al. A smartphone-enabled fall detection framework for elderly people in connected home healthcare[J]. IEEE Network, 2019, 33(6): 58-63.
|