[1] 慕庆国.煤矿安全程度的可能性分析方法[J].煤炭安全,2004,30(3):50-52. MU Qingguo.The method of possibility analysis about coal mine safety level[J].Safety in Coal Mines,2004,30(3):50-52. [2] 位爱竹.煤矿企业危害辨识、风险评价及方法的选取[J].能源技术与管理,2004(2):42-44. WEI Aizhu.The selection of method about hazard identification and risk evaluation in coal mine[J].Energy Technology and Management,2004(2):42-44. [3] 傅贵,殷文韬,董继业.行为安全“2-4模型”及其在煤矿安全管理中的应用[J].煤炭学报,2013,38(7):1 123-1 129. FU Gui,YIN Wentao,DONG Jiye.Behavior-based accident causation:the“2-4” model and its safety implication in coal mines[J]. Journal of China Coal Society,2013,38(7):1 123-1 129. [4] SHAPPELL S A,WIEGMANN D A.The human factors analysis and classification system-HFACS[J].American Libraries,2000,1(1):20-46. [5] DAHLG Y,YU Dong,et al.Context-dependent pre-trained deep neural networks for large vocabulary speech recognition[J].IEEE Trans on Audio,Speech,and Language Processing,2012,20(1):30-42. [6] 张建国.基于深度学习的场景分类[D].锦州:辽宁工业大学,2016. ZHANG Jianguo.Scene classification based on the deep learning[D].Jinzhou:Liaoning University of Technology,2016. [7] GIRSHICK R,DONAHUE J,DAIRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C].27th IEEE Conference on Computer Vision and Pattern Recognition,2014:580-587. [8] 曾敏,周益龙.基于深度学习模型的行人检测研究与仿真[J].南京邮电大学学报:自然科学版,2015,35(6):111-116. ZENG Min,ZHOU Yilong.Simulation of pedestrian detection based on deep learning model[J].Journal of Nanjing University of Posts and Telecommunications:Nature Science Edition,2015,35(6):111-116. [9] 佟瑞鹏, 陈策,李媛媛, 等. 面向行为安全的多维场景数据模型与应用[J]. 中国安全科学学报, 2016, 26(11): 1-6. TONG Ruipeng, CHEN Ce, LI Yuanyuan, et al. Research on multidimensional scene data model and its application for behavioral safety[J].China Safety Science Journal,2016,26(11):1-6. [10] 宋庆欢.场景识别技术研究[D].北京:中国科学院大学,2015. SONG Qinghuan.Scene recognition technology research[D].Beijing:University of Chinese Academy of Sciences,2015. [11] SMOLENSKY P.Information processing in dynamical system:foundations of harmony theory[C].Parallel Distributed Processing:Explorations in the Microstructure of Cognition,1986:195-281. [12] 汪海波,陈雁翔,李艳秋.基于主成分分析和Softmax回归模型的人脸识别方法[J].合肥工业大学学报:自然科学版,2015,38(6):759-763. WANG Haibo,CHEN Yanxiang,LI Yanqiu.Face recognition method based on principal component analysis and Softmax regression model[J].Journal of Hefei University of Technology:Natural Science,2015,38(6):759-763. |