中国安全科学学报 ›› 2017, Vol. 27 ›› Issue (4): 49-54.doi: 10.16265/j.cnki.issn1003-3033.2017.04.009

• 安全系统学 • 上一篇    下一篇

基于深度学习的不安全因素识别和交互分析

佟瑞鹏 副教授, 崔鹏程   

  1. 中国矿业大学(北京) 资源与安全工程学院,北京 100083
  • 收稿日期:2017-02-09 修回日期:2017-03-18
  • 作者简介:佟瑞鹏 (1977—),男,黑龙江穆棱人,博士,副教授,主要从事行为安全与管理、风险建模与评估、公共安全与健康等方面的研究。E-mail:tongrp@cumtb.edu.cn。
    崔鹏程 (1993—),男,河南济源人,硕士研究生,主要研究方向为行为安全与管理。E-mail:18811776127@163.com。
  • 基金资助:
    国家自然科学基金资助(51674268)。

Unsafe factor recognition and interactive analysis based on deep learning

TONG Ruipeng, CUI Pengcheng   

  1. School of Resources & Safety Engineering,China University of Mining and Technology (Beijing), Beijing 100083,China
  • Received:2017-02-09 Revised:2017-03-18

摘要: 为解决行为安全领域不安全因素识别和交互分析困难的问题,构建基于深度学习的不安全因素识别和交互分析模型。首先,从“人-机-环”3方面构建不安全因素识别层,分别采用不同的深度学习结构识别作业人员行为属性、工作环境场景和操作设备工作状态的不安全因素;然后,通过因素交互层,采用关联和回归多值算法完成对不安全因素的交互分析;最后,通过输出显示层实现分析结果的表征。以某煤矿综采、掘进、通风3个生产活动类别的视频音频数据为例,通过Matlab操作平台选取最优深度学习结构,进行模型交互分析。结果表明,用该模型能实现对采煤面空顶作业、喷浆机故障仍然加料、主要通风机异常响动未停机检查等不安全因素的识别和交互分析,完成不安全行为的描述以及风险分级、行为痕迹的分类。

关键词: 深度学习, 行为安全, 人-机-环, 不安全因素, 交互分析

Abstract: In order to solve the problem of unsafe factor identification and interactive analysis in the field of behavior based safety, an unsafe factor identification and interaction analysis model based on deep learning was built after building an unsafe factor identification layer from the "human-machine-environment" aspects, which use different deep learning structures to identify the behavior attributes of workers,unsafe factors in work environment scenarios and equipment operating states. Then, through the interaction layer of factors, the correlation and regression multi-value algorithm were used to analyze the unsafe factors. Finally, representation of the analysis results was achieved by the outputting display layer. An interactive analysis was carried out for unsafe factors in a certain coal mine's three types of production activities, fully mechanized coal mining, tunneling and ventilation, by using the optimal deep learning structures selected by Matlab platform,on the basis of the video and audio data provided by the coal mine. The results show that the model can be used to identify and analyze the unsafe factors, such as operation at coal mining surface without support, and feeding materials into a shotcrete machine going wrong, describe unsafe behavior, and classify the risks and the behavior traces.

Key words: deep learning, behavior based safety, human-machine-environment, unsafe factor, interaction analysis

中图分类号: