| [1] |
XU Chengyuan, YAN Xiaopeng, KANG Yili, et al. Structural failure mechanism and strengthening method of fracture plugging zone for lost circulation control in deep naturally fractured reservoirs[J]. Petroleum Exploration and Development, 2020, 47(2): 430-440.
doi: 10.1016/S1876-3804(20)60060-X
|
| [2] |
李玉飞, 张博, 孙伟峰. 基于SVM和D-S证据理论的早期溢流智能识别方法[J]. 钻采工艺, 2020, 43(5):27-30,6.
doi: 10.3969/J. ISSN.1006-768X.2020.05.08
|
|
LI Yufei, ZHANG Bo, SUN Weifeng. Research on intelligent early kick identification method based on SVM and D-S evidence theory[J]. Drilling & Production Technology, 2020, 43(5): 27-30,6.
|
| [3] |
邴磊. 基于Attention-GRU算法早期溢流识别预警方法[J]. 海洋石油, 2025, 45(2):76-82.
|
|
BING Lei. Early overflow identification based on Attention-GRU algorithm early warning method[J]. Offshore Oil, 2025, 45(2):76-82.
|
| [4] |
张禾, 池紫欣. 基于BSMOTE-SVM算法的溢流风险评价[J]. 控制工程, 2023, 30(12): 2173-2178.
|
|
ZHANG He, CHI Zixin. Overflow risk evaluation based on BSMOTE-SVM algorithm[J]. Control Engineering of China, 2023, 30(12): 2173-2178.
|
| [5] |
YANG Jin, SUN Ting, ZHAO Ying, et al. Advanced real-time gas kick detection using machine learning technology[C]. Proceedings of the 29th International Ocean and Polar Engineering Conference, 2019:1404-1409.
|
| [6] |
陈青, 黄志强, 孔祥伟, 等. 基于多录井参数特征同步的溢流事故监测研究[J]. 应用数学和力学, 2025, 46(2): 241-53.
|
|
CHEN Qing, HUANG Zhiqiang, KONG Xiangwei, et al. Study on overflow accident monitoring based onsynchronous features of multiple well logging parameters[J]. Applied Mathematics and Mechanics, 2025, 46(2): 241-53.
|
| [7] |
ZHANG Dezhi, SUN Weifeng, DAI Yongshou, et al. A hierarchical early kick detection method using a cascaded GRU network[J]. Geoenergy Science and Engineering, 2023, 222: DOI: 10.1016/j.geoen.2022.211390.
|
| [8] |
史肖燕, 周英操, 赵莉萍, 等. 基于随机森林的溢漏实时判断方法研究[J]. 钻采工艺, 2020, 43(1): 9-12,7.
doi: 10.3969/J. ISSN.1006-768X.2020.01.03
|
|
SHI Xiaoyan, ZHOU Yingcao, ZHAO Liping, et al. Losses in real time on basis of random forest method[J]. Drilling & Production Technology, 2020, 43(1): 9-12,7.
|
| [9] |
WANG Chao, LIU Gonghui, YANG Zhirong, et al. Downhole working conditions analysis and drilling complications detection method based on deep learning[J]. Journal of Natural Gas Science and Engineering, 2020, 81: DOI: 10.1016/j.jngse.2020.103485.
|
| [10] |
ZHANG Zhi, SUN Baojiang, WANG Zzhiyuan, et al. Early monitoring method of downhole accident driven by physics based model and data driven methods coupling[J]. Geoenergy Science and Engineering, 2023, 221:DOI: 10.1016/j.jngse.2020.103485.
|
| [11] |
LIU Wei, FU Jiasheng, DENG Song, et al. Overflow identification and early warning of managed pressure drilling based on series fusion data-driven mode[J]. Processes, 2024, 12: DOI: 10.3390/pr12071436.
|
| [12] |
陈贵波, 刘东升, 李加卫, 等. 基于时间和通道融合的多变量时间序列异常检测[J/OL]. 计算机应用与软件:1-13.[2025-09-01]. https://link.cnki.net/urlid/31.1260.TP.20250919.1739.004.
|
|
CHEN Guibo, LIU Dongsheng, LI Jiawei, et al. Multivariate time series anomaly detection based on time and channel fusion[J/OL]. Computer Applications and Software:1-13.[2025-09-01]. https://link.cnki.net/urlid/31.1260.TP.20250919.1739.004.
|
| [13] |
WANG Shuhua, CHEN Zan, CHEN Shengnan. Applicability of deep neural networks on production forecasting in Bakken shale reservoirs[J]. Journal of Petroleum Science and Engineering, 2019, 179: 112-125.
doi: 10.1016/j.petrol.2019.04.016
|
| [14] |
杨向前, 张苹茹, 武胜男, 等. 基于数据模型协作的海上钻井溢流早期预测预警[J]. 中国安全科学学报, 2024, 34(4): 93-100.
doi: 10.16265/j.cnki.issn1003-3033.2024.04.1390
|
|
YANG Xiangqian, ZHANG Pingru, WU Shengnan, et al. Early prediction and waring of ofshore drilling overlow based ondata model collaboration[J]. China Safety Science Joural, 2024, 34(4):93-100.
|
| [15] |
葛亮, 滕怡, 肖国清, 等. 基于井下环空参数的溢流智能预警技术研究[J]. 西南石油大学学报:自然科学版, 2023, 45(2): 126-134.
|
|
GE Liang, TENG Yi, XIAO Guoqing, et al. Research on overlow intelligent warning teclmology based on downhole annulus parameters[J]. Joumnal of Southwest Petroleum university:Science & Technology Edition, 2023, 45(2):126-134.
|
| [16] |
李开荣, 陈俊男, 段丽娟, 等. 钻井液池体积精准监测装置的研制与应用[J]. 录井工程, 2022, 33(4):92-96.
doi: 10.3969/j.issn.1672-9803.2022.04.015
|
|
LI Kairong, CHEN Junnan, DUAN Lijuan, et al. Development and application of accurate monitoring device for drilling fluid pit volume[J]. Mud Logging Engineering, 2022, 33(4):92-96.
doi: 10.3969/j.issn.1672-9803.2022.04.015
|
| [17] |
张继德, 张永刚, 韩国生, 等. 钻井液录井参数在钻井工程异常预报中的应用[J]. 录井工程, 2010, 21(3): 39-44,76-77.
|
|
ZHANG Jide, ZHANG Yonggang, HAN Guosheng, et al. The application of drilling fluid logging parameter in the abnormal prediction of drilling engineering[J]. Mud Logging Engineering, 2010, 21(3): 39-44,76-77.
|
| [18] |
OSAROGIAGBON A, MUOJEKE S, VENKATESAN R, et al. A new methodology for kick detection during petroleum drilling using long short-term memory recurrent neural network[J]. Process Safety and Environmental Protection, 2020, 142: 126-137.
doi: 10.1016/j.psep.2020.05.046
|
| [19] |
SUN Weifeng, LI Weihua, ZHANG Dezhi, et al. Lost circulation monitoring using bi-directional LSTM and data augmentation[J]. Geoenergy Science and Engineering, 2023, 225: DOI: 10.1016/j.geoen.2023.211660.
|
| [20] |
WU Shengnan, HU Yiming, ZHANG Laibin, et al. Intelligent risk identification for drilling lost circulation incidents using data-driven machine learning[J]. Reliability Engineering & System Safety, 2024, 252: DOI: 10.1016/j.ress.2024.110407.
|
| [21] |
POWERS D. Evaluation: from precision, recall and F-measure to ROC, informedness, markedness & correlation[J]. Journal Machine Learning Technologies, 2011, 2: 37-63.
|